首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured, Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn^2 ( or Fe^2 ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn^2 ( or Fe^2 ) in dissolved state to Mn^4 ( or Fe^3 ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.  相似文献   

2.
The uptake of zinc and cadmium by a species of marine diatom Thalassirosira weissflogii and the nutrient variation (phosphorus and silicon) in the culture medium were estimated when exposed to zinc and cadmium stress under controlled laboratory conditions.It was found that low cadmium addition could stimulate the culture to grow with a relatively high rate and exert its toxicity at the elevated concentration.The cellular uptake of zinc and cadmium by the diatom varied in the ranges of 1.21~3.75 and 0.060~0.629 fmol per cell respectively in the whole cultivation period.The mean cellular phosphorus and silicon drawdowns were constant with 0.26~0.42 and 0.30~0.46 pmol per cell respectively in those healthy cultures.It is illustrated that the algal cells can adjust some physiological mechanisms to decrease metal accumulation and keep metal homeostasis in the organism.The correlation analysis results further indicate that the cellular cadmium uptake might be closely related with the cellular phosphorus, silicon drawdown and the growth rate of diatom (P<0.05, 0.001, 0.01); and the cultures grow better in good conditions, the lower amount of phosphorus, silicon materials are consumed by a single cell to keep a high efficiency of utilization.  相似文献   

3.
The major and minor element contents in the sediment core H9 from the hydrothermal fields of the Okinawa Trough show a sharp change at the depth of 80 cm. The elements enriched in the upper 80 cm core are those enriched in the hydrothermal deposits and in the surface sediments recovered from the hydrothermal fields in the trough, which indicates the input of hydrothermal materials. Comparing with other hydrothermal sediments from Mid-ocean Ridges or the Lau Basin, the degree of the enrichment of elements iron, copper,cobalt, and nickel is relatively low. However, the enrichment of elements manganese, lead, arsenic, antimony and mercury is remarkable. The average contents of these elements in the upper 80 cm core sediments are three to six times those in the lower section, and 3~12 times those in the surface sediments which are not influenced by hydrothermal activities. Hydrothermal activities have contributed significant manganese, lead, arsenic, antimony and mercury to the sediments, and these elements are distinct indicators for the hydrothermal activity in the Okinawa Trough. The significant enrichment of these elements in Core H9 upward from the depth 80 cm indicates the start or the significant enhancing of the hydrothermal activity in this area at about 5 740 aB.P. The average accumulation rate of manganese during this period is about 40 461 μg/(cm2·ka), which is similar to the hydrothermal sediments in the Lau Basin or the East Pacific Rise.  相似文献   

4.
Carbon cycle is connected with the most important environmental issue of Global Change.As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ o  相似文献   

5.
Detailed rock magnetic investigations were undertaken at 2~4 cm interval for the gravity core CSH1(with a length of 17.36 m) from the northern Okinawa Trough.Time-scale of the core was constructed by two characteristic tephras and foraminferal assemblages,indicating an age of 50 ka for the bottom of the core.Except for three tephras and abrupt decrease in surface,there are little changes in all kinds of rock magnetic parameters that can be correlated to the climate change for the last 50 ka.Different from the common sediments,most S-ratios(S equals the negative ratio of IRM-0.3T to SIRM,which is an indicator of low coercivity content)of the sediments are smaller than 0.9,which implies a substantial amount of magnetic minerals with high coercivity.The existence of iron sulphide(greigite or pyrrhotite) is revealed by representative susceptibility-temperature curves showing 200~350 ℃ Curie temperature in addition to 580 ℃ of magnetite,and also by awful smell during heating and dark heating products.Both the occurrence of authigenic iron sulphide and quick decrease of magnetic parameters near the surface clearly show that sediments from Core CSH1 have undergone early diagenesis.The featureless magnetic changes of the whole core except for three tephras mean that the post-depositonal alteration is so strong that most original signals have been destroyed.For the same reason,the organic matter in sediment and sulphate in pore water must have been consumed along with dissolution,precipitation of iron and manganese happening sequencially during the redox reaction series.Great caution must be taken when using these altered chemical parameters for the interpretation of climatic changes.  相似文献   

6.
In terms of downward transport, suspended particulate matter(SPM) from marine or terrigenous sources is an essential contributor to the carbon cycle. Within mesoscale environments such as seagrass ecosystems, SPM flux is an essential part of the total carbon budget that is transported within the ecosystem. By assessing the total SPM transport from water column to sediment, potential carbon burial can be estimated. However, SPM may decompose or reforming aggregate during transport, so estimating the vertical flux without knowing the decomposition rate will lead to over-or underestimation of the total carbon budget. Here this paper presents the potential decomposition rate of the SPM in seagrass ecosystems in an attempt to elucidate the carbon dynamics of SPM. SPM was collected from the seagrass ecosystems located at Sikka and Sorong in Indonesia. In situ experiments using SPM traps were conducted to assess the vertical downward flux and decomposition rate of SPM. The isotopic profile of SPM was measured together with organic carbon and total nitrogen content. The results show that SPM was transported to the bottom of the seagrass ecosystem at a rate of up to(129.45±53.79)mg/(m~2·h)(according to carbon). Considering the whole period of inundation of seagrass meadows, SPM downward flux reached a maximum of 3 096 mg/(m~2·d)(according to carbon). The decomposition rate was estimated at from 5.9 μg/(mg·d)(according to carbon) to 26.6 μg/(mg·d)(according to carbon). Considering the total downward flux of SPM in the study site, the maximum decomposed SPM was estimated 39.9 mg/(m~2·d)(according to carbon) and 82.6 mg/(m~2·d)(according to carbon) for study site at Sorong and Sikka, respectively.The decomposed SPM can be 0.6%–2.7% of the total SPM flux, indicating that it is a small proportion of the total flux. The seagrass ecosystems of Sorong and Sikka SPM show an autochthonous tendency with the primary composition of marine-end materials.  相似文献   

7.
Organic carbon (OC) in definitely small area sediments(according to marine dimension)offthe Huanghe River Estuary is investigated in order to evaluate the feature of regional difference of physical and chemical properties in marginal sea sediments.The distributions of OC in sediments with natural grain size and the relationship with the pH,Eh,Es and Fe^3 /Fe^2 are discussed.In addition,OC decomposition rates in surfacial/subsurfacial sediments are estimated.OC concentrations range from 0.26% to 1.8%(wt)in the study area. Significant differences in OC content and in horizontal distribution as well as various trends in surfacial/subsurfacial sediments exhibit the feature of regional difference remarkably in marginal sea sediments. The complicated distribution of OC in surface sediments is due to the influence of bacterial activity and abundance, bioturbation of benthos and physical disturbance. The OC decomposition rate constant in surfacial/subsurfacial sediments ranges from 0.009 7 to 0.076 a^-1 and the relatively high values may be mainly related to bacteria that are mainly responsible for OC mineralization;meio-and macrofauna affect OC degradation both directly, through feeding on it, and indirectly through bioturbation and at the same time coarse sediments are also disadvantageous to OC preservation.In almost all the middle and bottom sediments the contents of OC decrease with the increase of deposition depth, which indicates that mineralization of OC in the middle and bottom sediments has occurred via processes like SO4^2- reduction and Fe-oxide reduction.  相似文献   

8.
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   

9.
红树林海岸的沉积物输运和碳沉降特征   总被引:1,自引:0,他引:1  
Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boundaries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often "environmentally sensitive" to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, although the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth and δ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.  相似文献   

10.
At present,the understanding of the dynamics of denitrifiers at different dissolved oxygen(DO)layers under organic carbon consumption within the surface sediments remains inadequate.In this study,high-throughput sequencing and quantitative PCR targeting nirS gene were used to analyze the denitrifier abundance dynamics,community composition,and structure for aerobic(DO 0.5-6.9 mg/L),hypoxic-anoxic(DO 0-0.5 mg/L),and anoxic(DO 0 mg/L)layers in surface sediments under organic carbon consumption.Based on the analysis of nirS gene abundance,the values of denitrifying bacteria decreased with organic carbon consumption at different DO layers.When the bacterial species abundance at the genus level were compared between the high-carbon and low-carbon sediments,there was significant increase in 6 out of 36,7 out of 36 and 6 out of 36 genera respectively for the aerobic,hypoxic-anoxic and anoxic layers.On the other hand,14 out of 36,9 out of 36 and 15 out of 36 genera showed significant decrease in bacterial species abundance respectively for the aerobic,hypoxic-anoxic and anoxic layers.Additionally,14 out of 36,20 out of 36,and 15 out of 36 genera had no change in bacterial species abundance respectively for the aerobic,hypoxic-anoxic,and anoxic layers.This indicates that the carbon utilization ability of different denitrifiers on each DO layers was generally different from each other.Diversity of denitrifying bacteria also presented significant differences in different DO layers between the high-and low-carbon content sediment layers.Moreover,under the high-carbon and low-carbon content,the abundance of nirS gene showed a high peak within the hypoxic-anoxic regions,suggesting that this region might be the main distribution area for the denitrifying bacteria within the surface sediments.Furthermore,community of unique denitrifiers occurred in different DO layers and the adaptive changes of the denitrifier community followed the organic carbon consumption.  相似文献   

11.
在2011年7月利用35SO2-4培养示踪法测定九龙江河口两个站位(A站位位于咸淡混合区,盐度3~5;B站位位于海相区,盐度20~25)沉积柱中硫酸盐还原速率的垂直分布。结果显示A站位沉积柱中硫酸盐还原速率变化范围为54~2 345nmol/(cm3·d),从表层到底部先增大后减小,最大值出现在20cm深度附近;B站位硫酸盐还原速率在24~987nmol/(cm3·d)之间,分别在10cm和78cm深度附近出现两个峰值,分别为876nmol/(cm3·d)和987nmol/(cm3·d)。综合分析两个站位孔隙水中SO2-4、甲烷浓度和沉积物中总有机碳、温度和氧化还原电位的垂直变化趋势与其硫酸盐还原速率的分布规律,表明A站位沉积物中硫酸盐还原以有机矿化为主;B站位受到有机质矿化和甲烷厌氧氧化的共同作用;两个站位硫酸盐还原速率及垂直分布趋势受孔隙水中SO2-4浓度、有机质活性和温度的共同影响;根据各个层位硫酸盐还原速率估算两个站位硫酸盐还原通量(以硫计)分别为527.9mmol/(m2·d)和357.1mmol/(m2·d),表明硫酸盐还原是九龙江河口有机质厌氧矿化的重要路径。  相似文献   

12.
中国第22次南极科学考察(2005年11月至2006年3月)期间,测定了南极普里兹湾海域5个站位的从表层至150 m水深的不同层位水样中溶解态和颗粒态234Th,238U的放射性比活度以及颗粒有机碳.利用234Th/238U在上层水体中的不平衡,计算了南极普里兹湾上层水体中234Th的平均停留时间和输出通量.结果显示,随着纬度的增加,上层水体中颗粒态和溶解态234Th的平均停留时间总体趋向减小,并在中纬度站位出现了最低值,分别为1~8和29~48 d,而颗粒态和溶解态234Th的输出通量则在中纬度站位出现了最大值,分别为21~38和26~39 dpm/(m3·d).运用箱型清除模式,利用两种不同的方法估算了各水柱中从真光层底部输出的POC通量,平均值分别达到104.7 mmol/(m2·d)(E法)和120.6 mmol/(m2·d)(B法),表明南极普里兹湾夏季存在很高的新生产力,它将会对该海域碳的生物泵过程产生重要作用.  相似文献   

13.
HalophilicVibriosinthewatersofXiamenHarborandDayaBay¥NiChunzhi;YeDezan;LinYanshun;ZhouZongcheng;YaoRuimeiandGuJingyu(ThirdIns...  相似文献   

14.
为探究马里亚纳海沟浮游病毒生态特征的垂直变化规律,本研究于2015年12月采集马里纳亚海沟表层到8727m共六层水样,对浮游病毒丰度,浮游细菌丰度,微微型浮游植物丰度以及裂解性浮游病毒生产力进行了分析。流式细胞技术分析结果表明,马里亚纳海沟各层浮游病毒丰度范围为1.27×105—1.93×106VLP/mL,其中表层丰度最高,随后逐渐降低,最低值出现在3699m处。而在深渊海沟区域内病毒丰度略有上升,最深处8727m病毒丰度为2.85×105VLP/mL。马里亚纳海沟裂解性浮游病毒生产力变化范围为2.86×104—4.21×105VLP/(mL·h),其垂直分布呈现出与浮游病毒丰度相似的趋势,生产力最高值出现在表层,随后在相对较低的水平变动,而在深渊海沟区域内随深度略微上升, 8727m处生产力为4.08×104VLP/(mL·h)。同时本文根据假定的研究区域浮游病毒平均裂解量及宿主平均有机物质含量计算出病毒导致的细菌死亡率(VMM)以及相应的有机碳和有机氮释放量,其中VMM变化范围为1.59×103—2.34×104cells/(mL·h),8727m处VMM为2.27×103cells/(mL·h)。而每小时病毒导致的细菌死亡数在总细菌数量中占比在8727m处最低,为4.6%,这表明浮游病毒在深海环境中的侵染活性相对较低,可能由于极端环境下浮游病毒多以溶源状态存在。在深渊海沟内部观察到相对较高的浮游病毒丰度以及相对较低的病毒生产力水平,表明该水域浮游病毒死亡率较低,这或许与海沟内温度极低且环境相对隔离有关。各层浮游病毒丰度及生产力与环境因子间相关性分析结果表明,浮游病毒丰度和生产力均与浮游细菌丰度表现出较高的正相关关系(P0.05),同时病毒生产力也表现出与温度的显著正相关性,表明浮游病毒的活跃程度主要依赖于宿主细胞的浓度以及海水温度。  相似文献   

15.
In this study,we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay,and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes(BFTIC).The average content of total carbon(TC) in the Sanggou Bay was 2.14%.Total organic carbon(TOC) accounted for a small proportion in TC,more than 65% of which derived from terrigenous organic carbon(Ct),and while the proportion of marine-derived organic carbon(Ca) increased significantly since the beginning of large-scale aquaculture.Total inorganic carbon(TIC) accounted for 60%–75%of TC,an average of which was 60%,with a maximum up to 90% during flourishing periods(1880–1948) of small natural shellfish derived from seashells inorganic carbon(Shell-IC).The TC burial fluxes ranged from 31 g/(m2·a)to 895 g/(m2·a) with an average of 227 g/(m2·a),which was dominated by TIC(about 70%).Shell-IC was the main source of TIC and even TC.As the main food of natural shellfish,biogenic silica(BSi) negatively correlated with BFTIC through affecting shellfish breeding.BFTIC of Sta.S1,influenced greatly by the Yellow Sea Coastal Current,had a certain response to Pacific Decadal Oscillation(PDO) in some specific periods.  相似文献   

16.
Application of a simple model describing regional variations in the contents of manganese and associated minor metals in deep-sea sediments suggests that solid manganese phases are being removed from the <0.5 μm fraction of seawater at ~1–7 · 1012g yr?1 in excess of the rate of stream-supplied manganese. This flux is consistent with: (1) the relative rates of sediment accumulation in the Atlantic and Pacific Oceans; (2) the contrast between the oceanic residence time of manganese calculated from stream-supply data (14 · 103 yr) and from the flux of manganese precipitating in marine sediments or as manganese nodules (0.38–2.4 · 103 yr); (3) the surplus mass of manganese revealed by geochemical balance calculations (22.9 · 102g). On this basis excess manganese is accumulating in deep-sea sediments at 0.2–2.0 · 10?6 g cm?2yr?1. Manganese supplied to the upper layers of marine sediments by diagenesis has been evaluated with the aid of vertical advection—diffusion—reaction models. The calculated diagenetic flux of manganese at the sediment surface in a near-shore environment is in agreement with the known accretion rate of manganese deposits (1.7 · 10?2 g cm?2 10?3 yr?1) and the regionally variable flux over the area assessed is consistent with the presence or absence of manganese nodules at or near the water-sediment interface. The diagenetic flux at the surface of deep-sea sediments has been calculated at 0.7 · 10?4 g cm?2 10?3 yr?1 when the upper, oxic, zone of the sediment is ~20 cm thick. A limiting factor on the in situ production flux of dissolved manganese in deep-sea sediments appears to be the availability of reducing agents for manganese dissolution rather than the rate of downward transport of manganese-rich sediment to a reaction boundary where dissolution takes place. Various estimates of the rate of upward-migrating manganese suggest that manganese precipitates in the oxic zone with a rate constant of ~10?7 sec?1 with the result that diagenetic processes cannot supply the flux of excess manganese through more than ~0.25 m of oxic sediment. However, estimates of the flux of manganese to the oceans by submarine volcanic processes (0.79–1.1 · 1012g yr?1) are similar to the surplus mass of manganese detected by geochemical balance calculations (0.7 · 1012g yr?1). If submarine hydrothermal solutions provide only 10% of this excess then their computed discharge rate (39 g cm?2 yr?1) and residence time in the upper layer of oceanic crust (130,000 yr) agree well with these parameters for continental thermal springs.  相似文献   

17.
2006年10月在黄海冷水团海域的三个站点开展了微型异养鞭毛虫、异养细菌和蓝细菌的密度和生物量调查,进行了微型异养鞭毛虫的现场摄食实验,通过荧光标记细菌法和消化系数法获得该海区微型异养鞭毛虫对异养细菌和蓝细菌的摄食率,并估算了微型异养鞭毛虫对异养细菌和蓝细菌现存量及生产力的摄食压。结果显示,微型异养鞭毛虫、异养细菌和蓝细菌的密度分别为0.36×103~1.13×103,0.39×106~1.13×106和0.04×104~3.74×104cells/cm3,温跃层以上明显高于底层。微型异养鞭毛虫对异养细菌的摄食率为5.33~14.89个/(HF·h),对蓝细菌的摄食率为0.26×102~23.10×10-2cells/(HF·h),摄食率随深度而下降。微型异养鞭毛虫每天能消耗9.27%~33.08%的异养细菌现存量和8.12%~16.09%的蓝细菌现存量。同时,微型异养鞭毛虫对异养细菌和蓝细菌的日摄食量各占它们生产力的2.66%~13.10%和8.12%~16.09%。研究表明微型异养鞭毛虫的摄食可能不是秋季黄海冷水团海域浮游细菌及其生产力的主归宿。  相似文献   

18.
In order to estimate the deposition rate of extraterrestrial material onto a manganese crust in a search for supernova debris, we analyzed the contents of 10Be, 230Th, 231Pa, and 239,240Pu in a sample of manganese crust collected from the North Pacific Ocean. On the basis of the depth profile of 10Be, the growth rate of the manganese crust was determined to be 2.3 mm Myr−1. The uptake rates of 10Be, 230Th, and 231Pa onto the manganese crust were estimated to be 0.22–0.44%, 0.11–0.73%, and 1.4–4.5%, respectively, as compared to the deposition rates onto the deep-sea sediments near the sampling station, while that for 239,240Pu was 0.14% as compared to the total inventory of seawater and sediment column. Assuming that sinking particles represent 0.11–4.5% of the uptake rates, the deposition rate of extraterrestrial material onto the manganese crust was estimated to be 2–800 μg cm−2Myr−1 according to the uptake of 10Be onto the manganese crust. Further, our estimate is similar to the value of 9–90 μg cm− 2Myr−1 obtained using the integrated global production rate of 10Be and the deposition rate of 10Be onto the manganese crust.  相似文献   

19.
南沙群岛海域以钡为指标的古生产力研究   总被引:1,自引:0,他引:1  
对南沙群岛海域3个站位沉积物柱样中的钡、钛元素进行了分析,以AMS-14Corc(有机碳)方法进行沉积物年代测定.对钡、钛元素的平面和深度分布特征进行研究发现,其中2个站位生源钡变化趋势明显,在距2800a左右生源钡含量开始明显升高.另一个站位钡的变化趋势比较复杂,结合对稀土元素、钛和其他过渡金属元素的分析,认为主要是由于该站位沉积物中陆源组分含量较高、沉积环境复杂所致.根据钡的古生产力计算模型估算了2个站位的古生产力状况,同时探讨了2个站位的古生产力变化的影响因素,认为这2个站位古生产力变化可能与全新世晚期的气候变冷事件有关.  相似文献   

20.
高源  何剑锋  陈敏  林凌  张芳 《海洋学报》2015,37(8):96-104
2012年夏季中国第5次北极科学考察期间,对北冰洋楚科奇海及其北部边缘海浮游细菌丰度和生产力进行了测定,并将其与环境因子进行了相关性分析。结果显示,楚科奇海浮游细菌丰度的变化范围为0.56×108~6.41×108 cells/dm3,平均为2.25×108 cells/dm3;细菌生产力介于0.042~1.92mg/(m3·d)(以碳计)之间,平均为0.54mg/(m3·d)(以碳计),与已有研究结果基本相当。陆架区细菌丰度和生产力要明显高于北部边缘区,但前者的单位细菌生产力则较低。与环境因子的相关性分析显示,细菌丰度与温度和叶绿素a浓度存在显著正相关(p0.01),表明北极变暖导致的海水升温及浮游植物生物量的增加均会促进细菌的生长,从而进一步提高细菌在海洋生态系统和碳循环中的作用。但陆架区的细菌生产力与环境参数均没有显著相关性,表明其影响因素较为复杂;生产力在北部边缘区则仅与叶绿素a存在显著正相关(p0.01),表明浮游植物生长过程产生的溶解有机碳(DOC)是细菌生长最为主要的碳源,碳源的单一可能制约细菌的生产从而导致该海域无冰状态下细菌丰度的增加不如预期,但融冰过程带来的大量DOC将促进细菌活性的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号