首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impacts of climate change on river flood risk at the global scale   总被引:6,自引:0,他引:6  
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.  相似文献   

2.
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3,400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24 %, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16 %. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.  相似文献   

3.
Global exposure to river and coastal flooding: Long term trends and changes   总被引:1,自引:0,他引:1  
Flood damage modelling has traditionally been limited to the local, regional or national scale. Recent flood events, population growth and climate change concerns have increased the need for global methods with both spatial and temporal dynamics. This paper presents a first estimation of global economic exposure to both river and coastal flooding for the period 1970–2050, using two different methods for damage assessment. One method is based on population and the second is based on land-use within areas subject to 1/100 year flood events. On the basis of population density and GDP per capita, we estimate a total global exposure to river and coastal flooding of 46 trillion USD in 2010. By 2050, these numbers are projected to increase to 158 trillion USD. Using a land-use based assessment, we estimated a total flood exposure of 27 trillion USD in 2010. For 2050 we simulate a total exposure of 80 trillion USD. The largest absolute exposure changes between 1970 and 2050 are simulated in North America and Asia. In relative terms we project the largest increases in North Africa and Sub-Saharan Africa. The models also show systematically larger growth in the population living within hazard zones compared to total population growth. While the methods unveil similar overall trends in flood exposure, there are significant differences in the estimates and geographical distribution. These differences result from inherent model characteristics and the varying relationship between population density and the total urban area in the regions of analysis. We propose further research on the modelling of inundation characteristics and flood protection standards, which can complement the methodologies presented in this paper to enable the development of a global flood risk framework.  相似文献   

4.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

5.
Damages from weather related disasters are projected to increase, due to a combination of increasing exposure of people and assets, and expected changes in the global climate. Only few studies have assessed in detail the potential range of losses in the future and the factors contributing to the projected increase. Here we estimate future potential damage from river flooding, and analyse the relative role of land-use, asset value increase and climate change on these losses, for a case study area in The Netherlands. Projections of future socioeconomic change (land-use change and increase in the value of assets) are used in combination with flood scenarios, projections of flooding probabilities, and a simple damage model. It is found that due to socioeconomic change, annual expected losses may increase by between 35 and 172% by the year 2040, compared to the baseline situation in the year 2000. If no additional measures are taken to reduce flood probabilities or consequences, climate change may lead to an increase in expected losses of between 46 and 201%. A combination of climate and socioeconomic change may increase expected losses by between 96 and 719%. Asset value increase has a large role, as it may lead to a doubling of losses. The use of single loss estimates may lead to underestimation of the impact of extremely high losses. We therefore also present loss–probability curves for future risks, in order to assess the increase of the most extreme potential loss events. Our approach thus allows a more detailed and comprehensive assessment than previous studies that could also be applied in other study areas to generate flood risk projections. Adaptation through flood prevention measures according to currently planned strategies would counterbalance the increase in expected annual losses due to climate change under all scenarios.  相似文献   

6.
Climate change is putting pressure on water systems, and its effects transcend man-made boundaries, making cooperation across territorial borders essential. The governance of transboundary flood risk management calls for solidarity among riparians, as climate change will make river basins more prone to flooding. ‘Solidarity’ means that individuals act to support members of a particular community to which they belong. Recently, the solidarity principle has become institutionalized due to its formalization in the EU Floods Directive. However, it is not clear what solidarity means in the upstream–downstream practices of transboundary flood risk management. Understanding the meaning of solidarity is important for the development of cross-border climate adaptation governance. This article discusses the conceptualization of the solidarity principle and explores its meaning for international cooperation in the Dutch North Rhine–Westphalian border region. Our critical case study reveals that although all actors understand the importance of solidarity, they interpret it differently, often based on self-interest related to their position in the catchment. The formal inclusion of the solidarity principle in the Floods Directive can best be seen as a step in the continuous development of transboundary flood risk governance, as no striking changes in practice have been identified after its formalization.

Policy relevance

As climate change increasingly puts pressure on river basins and other shared resources, cross-border cooperation and solidarity are seen as increasingly important. This article discusses the meaning of solidarity in practice and reveals how this normative principle may contribute to transboundary climate adaptation governance. Understanding its meaning is important for future cross-border climate adaptation governance.  相似文献   

7.
Climate change due to a doubling of the carbon dioxide in the atmosphere and its possible impacts on the hydrological cycle are a matter of growing concern. Hydrologists are specifically interested in an assessment of the impacts on the occurrence and magnitude of runoff, evapotranspiration, and soil moisture and their temporal and spatial redistribution. Such impacts become all the more important as they may also affect the water availability in the storage reservoirs. This paper examines the regional effects of climate change on various components of the hydrologic cycle viz., surface runoff, soil moisture, and evapotranspiration for three drainage basins of central India. Plausible hypothetical scenarios of precipitation and temperature changes are used as input in a conceptual rainfall-runoff model. The influences of climate change on flood, drought, and agriculture are highlighted. The response of hypothetical reservoirs in these drainage basins to climate variations has also been studied. Results indicate that the basin located in a comparatively drier region is more sensitive to climatic changes. The high probability of a significant effect of climate change on reservoir storage, especially for drier scenarios, necessitates the need of a further, more critical analysis of these effects.  相似文献   

8.
River discharge forms a major freshwater input into the Arctic Ocean, and as such it has the potential to influence the oceanic circulation. As the hydrology of Arctic river basins is dominated by cryospheric processes such as snow accumulation and snowmelt, it may also be highly sensitive to a change in climate. Estimating the water balance of these river basins is therefore important, but it is complicated by the sparseness of observations and the large uncertainties related to the measurement of snowfalls. This study aims at simulating the water balance of the Barents Sea drainage basin in Northern Europe under present and future climate conditions. We used a regional climate model to drive a large-scale hydrological model of the area. Using simulated precipitation derived from a climate model led to an overestimation of the annual discharge in most river basins, but not in all. Under the B2 scenario of climate change, the model simulated a 25% increase in freshwater runoff, which is proportionally larger than the projected precipitation increase. As the snow season is 30–50 day shorter, the spring discharge peak is shifted by about 2–3 weeks, but the hydrological regime of the rivers remains dominated by snowmelt.  相似文献   

9.
The possibility ofassessing changes in river runofftill 2100 for a number oflarge river basins of the world for a wide range of natural conditions is investigated. The assessment is based on the SWAP (Soil Water–Atmosphere–Plants) model using meteorological data as inputs which were simulated with different general atmosphere–ocean circulation models in accordance with the RCP climate change scenarios. The possible climatic changes in annual runoff for some rivers by the end of the 21st century are compared with the natural interannual variability of river runoff caused by weather noise.  相似文献   

10.
中小河流域暴雨洪涝灾害风险评估及效果检验   总被引:1,自引:0,他引:1  
谢五三  宋阿伟  田红 《气象科学》2018,38(2):264-270
本文基于FloodArea水动力模型及WRF模式,运用气象资料、水文资料、地理信息资料、社会经济统计资料以及灾情调查资料等,以长江一级支流的秋浦河流域为研究区,开展中小河流域暴雨洪涝灾害风险评估及效果检验。结果表明:FloodArea模型对洪水的淹没范围、淹没水深以及淹没历时等具有较好的模拟效果,可用于中小河流域暴雨洪涝灾害风险评估与预警业务,并由此初步建立了包含模式降水预报→面雨量计算→洪涝淹没模拟→风险评估→预警发布→效果检验等环节的暴雨洪涝灾害风险评估及效果检验业务流程,实现从以往常规的强降水预报到暴雨洪涝灾害预报的业务延伸,可进行推广应用。  相似文献   

11.
The risks to human populations in coastal areas are changing due to climate and socio-economic changes, and these trends are predicted to accelerate during the twenty-first century. To understand these changing risks, and the resulting choices and pathways to successful management and adaptation, broad-scale integrated assessment is essential. Due to their complexity the two risks of flooding and erosion are usually managed independently, yet frequently they are interconnected by longshore exchange of sediments and the resulting broad scale morphological system behaviour. In order to generate new insights into the effects of climate change and coastal management practises on coastal erosion and flood risk, we present an integrated assessment of 72 km of shoreline over the twenty-first century on the East Anglian coast of England which is a site of significant controversy about how to manage coastal flood and erosion risks over the twenty-first century. A coupled system of hydrodynamic, morphological, reliability and socio-economic models has been developed for the analysis, implemented under scenarios of coastal management, climate and socio-economic change. The study is unique in coastal management terms because of the large spatial scale and extended temporal scale over which the analysis is quantified. This study for the first time quantifies what has for some years been argued qualitatively: the role of sediments released from cliff erosion in protecting neighbouring low-lying land from flooding. The losses and benefits are expressed using the common currency of economic risk. The analysis demonstrates that over the twenty-first century, flood risk in the study area is expected to be an order of magnitude greater than erosion risk. Climate and socio-economic change and coastal management policy have a significant influence on flood risk. This study demonstrates that the choices concerning coastal management are profound, and there are clear tradeoffs between erosion and flood impacts.  相似文献   

12.
Brazilian strategic interest in the Madeira River basin, one of the most important of the southern Amazon tributaries, includes the development of hydropower to satisfy the country’s growing energy needs and new waterways to boost regional trade and economic development. Because of evidences that climate change impacts the hydrological regime of rivers, the aim of this study was to assess how global climate change and regional land cover change caused by deforestation could affect the river’s hydrological regime. To achieve this goal, we calibrated a large-scale hydrological model for the period from 1970–1990 and analyzed the ability of the model to simulate the present hydrological regime when climate model simulations were used as input. Climate change projections produced by climate models were used in the hydrological model to generate scenarios with and without regional land-use and land-cover changes induced by forest conversion to pasture for the period from 2011–2099. Although results show variability among models, consensus scenarios indicated a decrease in the low-flow regime. When the simulations included forest conversion to pasture, climate change impacts on low flows were reduced in the upper basin, while, in the lower basin, discharges were affected along the whole year due to the more vigorous land-use conversion in the Brazilian region of the basin.  相似文献   

13.
Interactive tools developed within the RegIS project for assessing the impacts of flooding provide information to support flood management policies and analyse the performance of possible adaptation activities to climate change. This paper describes the methodologies used in the development of these tools including tidal and fluvial flooding processes with different levels of climate pressures, represented by changes in sea level and peak river flows. Potential impacts of climate change for East Anglia and North West England are explored to the 2050s using four socio-economic scenarios to represent plausible futures. This includes changes in urban land use as well as adaptive responses to flooding comprising dike upgrade and realignment options. The results indicate that future climate will increase flood risk in both regions. East Anglia is more vulnerable to climate change than North West England at the present level of protection, especially in the extensive coastal lowlands of the Fens and Broads because of the combined effects of sea-level rise and increased fluvial flows. Although the present adaptive policy of upgrading defences in East Anglia will reduce the impacts of flooding, this policy is not effective in the case of the more extreme climate change scenarios by 2050s. In this case, more extensive adaptation would be required.  相似文献   

14.
流域洪涝定量描述及江西省48a流域洪涝分析   总被引:1,自引:1,他引:1  
分别对单站洪涝强度、流域集中期洪涝强度和流域汛期洪涝强度进行了定量描述。并对1951~1998年江西省5大流域的洪涝分别进行了比较分析,得出了各大流域近半世纪10大洪涝集中期、10大洪涝汛期和南北分片10大洪涝年。  相似文献   

15.
Hydropower generation plays a key role in mitigating GHG emissions from the overall power supply. Although the maximum achievable hydropower generation (MAHG) will be affected by climate change, it is seldom incorporated in integrated assessment models. In this study, we first used the H08 global hydrological model to project MAHG under two physical climate change scenarios. Then, we used the Asia-Pacific Integrated Model/Computable General Equilibrium integrated assessment model to quantify the economic consequences of the presence or absence of mitigation policy on hydropower generation. This approach enabled us to quantify the physical impacts of climate change and the effect of mitigation policy—together and in isolation—on hydropower generation and the economy, both globally and regionally. Although there was little overall global change, we observed substantial differences among regions in the MAHG average change (from ??71% in Middle East to 14% in Former Soviet Union in RCP8.5). We found that the magnitude of changes in regional gross domestic product (GDP) was small negative (positive) in Brazil (Canada) by 2100, for the no mitigation policy scenario. These consequences were intensified with the implementation of mitigation policies that enhanced the price competitiveness of hydropower against fossil fuel-powered technologies. Overall, our results suggested that there would be no notable globally aggregated impacts on GDP by 2100 because the positive effects in some regions were canceled out by negative effects in other regions.  相似文献   

16.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

17.
东津河流域暴雨洪涝灾害风险区划   总被引:3,自引:2,他引:1  
谢五三  吴蓉  田红  卢燕宇 《气象》2017,43(3):341-347
本文从暴雨致灾机理出发,以东津河流域为例,开展中小河流域暴雨洪涝灾害风险区划技术研究。根据气象资料、水文资料、地理信息资料、社会经济统计资料以及历史灾情资料等,运用TOPMODEL水文模型并结合统计法确定致洪临界面雨量,利用逐步回归法重建区域站资料序列,基于广义极值分布函数计算出不同重现期的致洪面雨量,根据流域内小时降水雨型分布,将不同重现期致洪面雨量以及叠加堤坝信息的DEM、manning系数等数据代人Flood Area模型进行洪水淹没模拟,得到不同重现期下洪水淹没图,再叠加流域内栅格化的人口、GDP以及土地利用信息,最终得到不同重现期下人口、GDP以及土地利用等风险区划图谱。建立的中小河流域暴雨洪涝灾害风险区划技术方法简便可行,区划结果精度高、实用性强,对于面向实时防灾减灾的动态灾害风险管理具有重要意义。  相似文献   

18.
屈产河流域位于黄土高原东部,流域内植被稀疏,土层厚而松,降水少且集中,遇暴雨天气容易发生泥石流、山洪等灾害。本文基于2020年8月5~6日罕见强降水的实地灾情调查结果,对FloodArea模型在屈产河流域的淹没水深和风险评估结果进行检验。结果表明:屈产河流域地势低洼的河道附近及干沟地区山洪风险较大;此次强降水过程屈产河流域最大淹没深度2.8 m,受洪灾影响人口为5475人,受影响GDP为3615×10^(4)元,耕地和居民地受灾面积分别为20.7 km^(2)和0.7 km^(2)。模拟最大淹没深度、受影响GDP和受灾面积与实际调查情况基本一致,但受影响人口低于实际调查结果,该结果表明FloodArea模型在屈产河流域具有较好的洪水淹没模拟效果,可用于暴雨洪涝灾害风险评估与预警业务。  相似文献   

19.
沿海地区频繁遭受洪水灾害,往往并非单一灾种驱动,而是多种致灾因子相互影响的综合结果。文中梳理了沿海地区复合洪水的主要驱动机理,归纳了复合洪水危险性研究中统计模型和动力数值模型两类主要研究方法,并分别阐述了近年来主要进展。复合洪水是极端高潮位(包括天文潮位、风暴潮和海浪)、河流洪水和强降水过程的两两组合或者是三者同时发生。基于统计模型的复合洪水危险性研究主要致力于各致灾变量的关联性分析和联合概率建模,可较好理解大尺度上复合洪水的时空变化,以及和气候因素之间的关系,其研究难点和未来趋势是构建非一致假设下二维以上的复合洪水统计模型。基于水动力数值模型的复合洪水淹没模拟需要水文、海洋和水力等多个模型耦合以及大气气象要素(台风过程、风场、气压场)作为重要边界条件,建模过程较复杂,计算耗时长,对计算水平要求高,但可较好地刻画复合洪水的演变过程,并便于未来情景分析。未来需要重视沿海地区复合洪水致灾成害机理的研究。在气象海洋预报业务服务方面,建议加强沿海地区复合洪水监测与预警技术方法研究,对沿海地区复合洪水过程全方面多角度监测,进行动力框架改进、物理过程参数化优化和资料同化,提高模式网格分辨率,优化集合预报方案。最后,亟需探究未来气候变化及人类活动对复合洪水危险性的综合影响。  相似文献   

20.
Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of climate change projections across different regional climate models (RCMs) forced by different global circulation models (GCMs). This study builds upon an indicator-based NUTS-2 level assessment that quantified potential changes for three climate-related hazards: heat stress, river flood risk, and forest fire risk, based on five GCM/RCM combinations, and non-climatic factors. First, a sensitivity analysis is performed to determine the fractional contribution of each single input factor to the spatial variance of the hazard indicators, followed by an evaluation of uncertainties in terms of spread in hazard indicator values due to inter-model climate variability, with respect to (changes in) impacts for the period 2041–70. The results show that different GCM/RCM combinations lead to substantially varying impact indicators across all three hazards. Furthermore, a strong influence of inter-model variability on the spatial patterns of uncertainties is revealed. For instance, for river flood risk, uncertainties appear to be particularly high in the Mediterranean, whereas model agreement is higher for central Europe. The findings allow for a hazard-specific identification of areas with low vs. high model agreement (and thus confidence of projected impacts) within Europe, which is of key importance for decision makers when prioritising adaptation options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号