首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exotic plant invasion is one of the major causes of species extinction. In many contexts, mountainous forests are the last refuge for native species. There are several inventory studies conducted in mountainous and tropical forests in Indonesia. However, there are no studies yet on the factors that explain the abundance and richness of surveyed naturalized alien species. This study investigated whether the number of individuals and abundanceweighted species richness(AWR) of naturalized alien plant species in the hiking-trail of Mount GedePangrango National Park(MGPNP) forest area correlated with leaf traits(specific leaf area(SLA) and leaf thickness) and environmental factors(elevation, slope, and normalized difference vegetation index(NDVI)). We showed that leaf thickness and habitat elevation explained the AWR variations of naturalized alien species. We did not detect any important effect of leaf traits and environmental factors on the number of individuals per exotic species per plot. The influence of leaf thickness and habitat elevation indicates the important role of both biotic and abiotic factors on exotic species to develop a high species richness and become an invasive species in the tropical mountain forest ecosystem.  相似文献   

2.
In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution (SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species (48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.  相似文献   

3.
Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability, especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.  相似文献   

4.
Understanding the spatial interactions among multiple ecosystem services is crucial for ecosystem services management. Ecosystem services, including crop production, freshwater supply, aquatic production, net primary production, soil conservation, water conservation, flood regulation, forest recreation, were measured at 1-km grid scale covering the Taihu Lake Basin (TLB) of China. Our objective is to get a comprehensive understanding of the spatial distributions, trade-offs, synergies of multiple ecosystem services across the TLB. Our results found that: 1) majority of ecosystem services were clustered in space and had a similar spatial distribution pattern with the geographical resource endowment. Most of the landscape contributed a high supply of no services, one or two, and a low supply of three to seven services. 2) There were high correlation between forest recreation and freshwater supply and regulating services. Aquatic production had low correlation with other services. 3) The changes of provisioning services led to trade-offs between regulating services and cultural services in the TLB, while synergies mainly occurred among the provisioning service. 4) The spatial relationships of multiple services are consistent at 1-km spatial scale, counties and provinces. This research could help integrate multiple ecosystem services across scales and serve as a reference for decision making.  相似文献   

5.
Water quality, size, connectivity and other physical properties of hydrological systems might have different functions in the formation and maintenance of biodiversity, but this remains mostly unclear due to the lack of undisturbed sites for experimental modelling. Alpine freshwater habitats such as micro-waterbodies(MWB) represent a kind of natural system suitable for biodiversity research. In order to assess potential linkages between environmental factors, connectivity of MWBs and aquatic species richness, we conducted a pilot study in two separated MWB systems located in Gaoligong Mountain, northwest Yunnan province, China. A total of 27 MWBs have been analyzed, including 22 connected and 5 isolated bodies. 13 conventional environmental factors were tested while all kinds of aquatic macro-organisms were collected and classified. Results showed a high environmental heterogeneity among MWBs and significant differences between the two systems but only a few environmental variables such as the depth of soil bottom, total Nitrogen and altitude were related to species richness and the formation of the community structure. As a benefit from the high environmental heterogeneity, the cascaded MWB systems provided divergent habitats able to support species richness at a higher level than the same number of randomly selected MWBs. This finding supports the idea that habitat connectivity matters also in extremely small aquatic ecosystems. Moreover, although still a preliminary result, a polarization effect within connected chains where edge MWBs host higher taxa and endemic taxa richness as well as larger populations, was detectable. This study gives interesting insights on the spatial processes driving community structure and a new prospective for biodiversity conservation. Since alpine MWBs have significant effects on the maintenance of watershed biodiversity, further research on such small and crucial ecosystems is encouraged.  相似文献   

6.
Wetland biodiversity means mainly the types of wetland ecosystem and biological species diversity. Biodiversity includes all species of plants, animals and microbes, all gene possessed by them and all ecosystems consisting of them and environment. According to the origin and genesis, China’s wetlands can be divided into natural wetland ecosystems including mires, lakeshores, bottomland, seashore, wet meadow, etc., and artificial wetland ecosystem including paddy field. Then based on geomorphological type, these ecosystems can be divided into 15 subsystems, then based on soil substrata and ecological niche conditions, they can be subdivided into 15 classes, finally according to construction species of plants, several types can be divided into. They are not only the expression of ecosystem diversity, but also the base for biological communities subsistence. This peculiar ecological niche provides a complex and perfect special habitat for various animal and plant communities. In this special habitat, there exist various biological types from monomolecular microbes to higher plants and animals, especially some endangered and rare plants and animals. According to the statistics, there are more than 300 species of birds in China wetlands, making up one-third of the total number of China’s birds. Wetlands not only good place for waterbirds living, but also the important environment on which wild animals and plant rely for existence. There are 65 species of mammals, 50 species of reptiles, 45 species of amphibious animals, 1040 species of fish, 825 species of higher plants, 639 species of angiosperm, 10 species of gymnosperm, 12 species of pteridophyte and 164 species of bryophyte investigated in China’s wetlands.  相似文献   

7.
China is undergoing a rapid urbanization process, and urbanization will have a direct impact on regional ecosystems and affect regional ecosystem services. Considering the mountainous counties in Southwestern China as the research object, this study reveals the spatial clustering characteristics of four typical ecosystem services(food production, soil conservation, water yield and carbon sequestration)as well as the trade-offs and synergies among ecosystem services in different urbanized areas. At the same time, piecewise linear regression is used to determine the threshold of the influence of urbanization on ecosystem services. The results indicate that: 1) There are spatial autocorrelations among the four typical ecosystem services; with strong clustering characteristics, the positive correlation types are "clustered" locally; and with significant spatial heterogeneity, the negative correlation types are scattered and mainly appear in the highly urbanized area. 2) There are also remarkable differences in the relationship among various ecosystem services in different urbanized areas, and in particular, there are marked trade-offs between food production and carbon sequestration in the moderately urbanized area and the highly urbanized area. However, there are synergies between them in the lowly urbanized area. 3) With an increase in the compounded night light index(CNLI), water yield, carbon sequestration, food production and overall ecosystem services values present an increasing-decreasing trend, the soil conservation function value shows a decreasing-increasing trend.The response of water yield, carbon sequestration,food production, and overall ecosystem services to the compounded night light index(CNLI) has a threshold of 1.2642, 1.4833, 1.3388, 1.5146 and 1.2237,respectively. Based on the detected relationships between urbanization and ecosystem services, this study provides a theoretical reference for the selection of urbanization development models in key ecological functional areas.  相似文献   

8.
Epiphytic plant species are an important part of biological diversity. It is therefore essential to understand the distribution pattern and the factors influencing such patterns. The present study is aimed at observing the patterns of species richness, abundances and species composition of epiphytic orchids and ferns in two subtropical forests in Nepal. We also studied the relationship of host plants (Schima wallichii and Quercus lanata) and epiphyte species. Data were collected in Naudhara community forest (CF) and the national forest (NF) in Shivapuri Nagarjun National Park. The data were analyzed using univariate and multivariate tests. In total, we recorded 41 species of epiphytes (33 orchid and 8 fern species). Orchid species abundance is significantly higher in CF compared to NF. Orchid species richness and abundance increased with increasing southern aspect whereas it decreased with increasing canopy cover, and fern species richness increased with host bark roughness. Orchid abundance was positively correlated with increasing bark pH, stem size, tree age and tree height and negatively correlated with increasing steepness of the area. Likewise, fern abundances were high in places with high canopy cover, trees that were tall and big, but decreased with increasing altitude and southern aspect. The composition of the orchid and fern species was affected by altitude, aspect, canopy cover, DBH, number of forks and forest management types. We showed that the diversity of orchid and fern epiphytes is influenced by host characteristics as well as host types. The most important pre-requisite for a high epiphyte biodiversity is the presence of old respectively tall trees, independent of the recent protection status. This means: (i) for protection, e.g. in the frame of the national park declaration, such areas should be used which host such old tall trees; and (ii) also in managed forests and even in intensively used landscapes epiphytes can be protected by letting a certain number of trees be and by giving them space to grow old and tall.  相似文献   

9.
《山地科学学报》2020,17(3):542-555
This study explores the relationship between the species composition of lichen and vascular plant species with microtopography at fine scale. We conducted our study in Hardengervidda National Park, Norway. Specifically, we aim to test whether the species richness of different plant lifeforms peaks at middle of the microtopography gradient, and then explain the observed patterns with an aid of snow cover gradient along microtopography and snow cover. We sampled 69 species of vascular plants and lichens in 151 plots of 4 m~2 along 23 transects during summer on Tronsbu, Sandhaug and Besso. Detrended correspondence analysis(DCA) was performed to explore how microtopographical gradient was related to the variation in the species composition. One-way ANOVA was performed to test the microtopographic variability in species richness.Afterwards, generalized linear model(GLM) was used to reveal species richness patterns along the snow cover gradient. The first axis in DCA represents the complex gradient from snow free ridge to wet snowbed habitats and the second axis represents a gradient from acidic to calcareous sites. Lichen's species richness is greater in ridge than in snowbeds, while all other life forms follow the opposite trend. Species richness for total plant species, vascular plant species and herbaceous plant species increased with increase in weighted average snow indicator value(WASI), whilst species richness for lichen species declined substantially towards the maximum WASI value. In contrast, species richness for dwarf shrub species showed a unimodal relationship with WASI. This study shows that liquid water availability provides a good potential explanation for species composition and richness in mountains, which is controlled by snow cover and prevalent wind direction.  相似文献   

10.
Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low native diversity' vs. ‘high native diversity', is supported by the regional distribution patterns of invasive plant species in the Himalayas,Nepal. This study is based on data retrieved from published literatures and herbarium specimens. The relationship between invasive plant species distribution patterns and that of native plant species is elucidated by scatter plots, as well as by generalized linear models. The native plant species and invasive plant species have similar distribution patterns and the maximum number of invasive plant species is found in the same altitudinal range where the highest richness for native tree species is found. There is a clear trend of higher invasive plant richness in regions where native tree species richness is relatively high.Consequently, the native plant richness is highest in the central phytogeographic region, followed by the eastern and the western regions, respectively. The invasive plant species also follows a similar trend.Additionally, the invasive plant species richness was positively correlated with anthropogenic factors such as human population density and the number of visiting tourists. This study supports the hypothesis that ‘high native diversity' supports or facilitates invasive plant species. Further, it indicates that nativeand invasive plant species may require similar natural conditions, but that the invasive plant species seem more dependent and influenced by anthropogenic disturbance factors.  相似文献   

11.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   

12.
Wetland economic valuation approaches and prospects in China   总被引:1,自引:0,他引:1  
Ecosystem services valuation seeks to increase the social relevance of ecosystem characteristics, the underlying biological mechanisms that support services, by making the contribution of ecosystems to human well-being explicit. Economic valuation can help management by clarifying the full range of benefits and costs of proposed management actions. In the past two decades, economic valuation of wetland ecosystem services has become one of the most significant scientific priorities for wetland protection. In this paper, we provide an overview of ecosystem services, and summarize the main interdisciplinary approaches to measure and value wetland ecosystem services. We identified four main methodological gaps preventing progress on wetland valuation of ecosystem services in China, which are: 1) confusion on terminology like intermediate and final ecosystem services, 2) lack of ecological production functions to link ecosystem characteristics to final ecosystem services, 3) static valuation making it difficult to evaluate the trade-offs and synergies among ecosystem services, and 4) lack of clear guidance on relating ecological compensation programs to conservation targets. Overcoming these gaps is important to inform wetland compensation mechanisms and conservation policies. We propose future research on wetland ecosystem services in China should be focused on: 1) defining final ecosystem services based on beneficiary preferences and underlying biophysical mechanisms, 2) establishing wetland monitoring programs at specific sites to collect data on final ecosystem service indicators and ecosystem characteristic metrics to create ecological production functions for economic valuation and rescaling techniques, and 3) incorporating wetland ecosystem service values into decision-making processes to inform wetland management.  相似文献   

13.
Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversity and environmental factors affect EMF. In this case study, a structural equation model was used to clarify climatic and geographic pathways that affect EMF by varying biodiversity in the Tibetan alpine grasslands. In addition to services related to carbon, nitrogen, and water cycling, forage supply, which is related to plantproductivity and palatability, was included in the EMF index. The results showed that 72% of the variation in EMF could be explained by biodiversity and other environmental factors. The ratio of palatable richness to all species richness explained 8.3% of the EMF variation. We found that air temperature, elevation, and latitude all affected EMF, but in different ways. Air temperature and elevation impacted the aboveground parts of the ecosystem, which included plant height, aboveground biomass, richness of palatable species, and ratio of palatable richness to all species richness. Latitude affected EMF by varying both aboveground and belowground parts of the ecosystem, which included palatable speciesrichness and belowground biomass. Our results indicated that there are still uncertainties in the biodiversity–EMF relationships related to the variable components of EMF, and climatic and geographic factors. Clarification of pathways that affect EMF using structural equation modeling techniques could elucidate the mechanisms by which environmental changes affect EMF.  相似文献   

14.
STUDY ON WETLAND BIODIVERSITY IN CHINA   总被引:5,自引:0,他引:5  
STUDYONWETLANDBIODIVERSITYINCHINA吕宪国,王荣芬STUDYONWETLANDBIODIVERSITYINCHINA¥LuXianguo;WangRongfen(ChangchunInstituteofGeography...  相似文献   

15.
Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species’ response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species, are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee (VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here. Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution of butterflies at family level. Also, distribution of butterflies in the area was independent of habitat type, at family level. Besides, we employed indicator group analysis (at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.  相似文献   

16.
The distinctive estuary hydrodynamics and nutrient input make the estuary ecosystem play a key role in lake ecosystems. The Nanfei River and Zhaohe River are two main inlets of Chaohu Lake, Anhui, East China. We selected estuaries of the two rivers as representative areas to study temporal and spatial changes of bacterial communities. In August (summer) and November (autumn) 2016 and February (winter) and May (spring) 2017, 16 water and sediment samples were collected from the estuaries. Physicochemical characteristics indicate significant differences in the nutritional status and eutrophication index of the estuaries due mainly to organic input. Examination of the number of operational taxonomic units, the diversity index, the community composition, and redundancy analysis revealed the following. First, the existence of varying degrees of seasonal differences in the distribution of almost all bacteria. In addition, the species diversity in the sediment samples was higher than that in the water samples, and the dominant species differed also among these samples. Second, a large number of unknown genera were detected, especially in the sediment samples, such as unclassified Xanthomonadales incertae sedis, unclassified Anaerolineaceae, and unclassified Alcaligenaceae. Last, TP, TN, and TOC were the main influential factors that affected the bacterial community structure.  相似文献   

17.
This study aimed to compare the distribution patterns and trends of plant parts used among different groups of medicinal plants, geographical regions,and between medicinal plants and all vascular plants.We used the published sources for elevation records of 2,331 medicinal plant species to interpolate presence between minimum and maximum elevations and estimated medicinal plant richness for each 100-m elevational band. Monte Carlo simulations were used to test whether differences in elevational distribution between different groups of medicinal plants were significant. Total number of medicinal plants as well as different groups showed unimodal relationship with elevation. The elevational distributions of medicinal plants significantly differ between regions and between medicinal plant groups.When comparing the richness of all medicinal plants to all vascular plants,Monte Carlo simulations indicated that the numbers of medicinal plants are higher than expected at low elevations.The highest richness of medicinal plants at low elevation could be possibly due to favorable environmental factors such as high temperature, rainfall,sunlight or due to higher density of human population and thus higher pressure on use of any plants in lower elevations.  相似文献   

18.
《山地科学学报》2020,17(10):2405-2417
Ohud mountain is one of the main important historic sites in the Arab Peninsula, and it is distinguishable over the rest of the mountains in the region. No extensive floristic survey has been carried out on Ohud mountain because of the rugged topography of this mountain. The current study investigates the floristic diversity and the correspondence of environmental factors of the phytogeographical distribution of plants, based on the floristic analysis of the present region. The research question is about the relationships between the species diversity and the human impacts of populated area at lowlands around Ohud mountain. A total of 59 species belonging to 56 genera and 28 families were recorded. Asteraceae had the highest contribution, about 12% of the total plant species. The analysis of the life forms demonstrated the prevalence of therophytes(68%) followed by chamaephytes(24%), indicating the adaptation of these life forms to hyperarid conditions. The chorological analysis indicated the predominance of the bi-regional taxa over the other phytochoria. Most of the recorded plant species belong to Saharo-Arabian and Sudano-Zambezian(24%) phytochoria. TWINSPAN analysis was performed to detect the indicator species of different vegetation groups and confirmed by detrended correspondence analysis(DCA or DECORANA). It is concluded that species richness and diversity revealed clear variation along the mountain and among the studied sites. Plant species diversity and richness were more pronounced in the intermediate portion of the elevation gradients across the mountain, with a decrease in the high altitudinal belts. The decrease was also recorded at the lower altitudes, where human impacts clearly affected vegetation; leading to a decrease in alpha diversity. In addition, the beta diversity among moderately highlands and lowlands was considerably high indicating the heterogeneous species composition among the studied sites along mountain elevations. The general pattern of vegetation groups distribution is controlled by a number of environmental factors; such as latitude, longitude, elevation, organic matter and some anions and cations. A Canonical Correspondence Analysis(CCA) ordination revealed that the vegetation structure has a strong association with the latitude of the mountain followed by organic matter and Magnesium. It is recommended that the populated area should be subjected to restoration of mountain ecosystem that might be degraded by human activities.  相似文献   

19.
Broadleaf-Korean pine forests exhibit high species richness and distinctive species composition, which are currently becoming more dominant among natural forests in Changbai Mountains of northeastern China. Understanding the ecological process of restored vegetation is quite important for ecosystem reconstruction. Distinguishing stand development stages and analyzing the dynamic spatial patterns could provide insights into significant community coexistence mechanisms. In the present study, eight permanent study areas were established according to the substituting space for time method in Changbai Mountains of north-eastern China. The optimal division method was used to quantify the successional series into different stand development stages, and the point pattern analysis method(L(r) function) was used to analyse the dynamic changes in spatial patterns and interspecific associations. Our results suggested that:(1) The stand development process was divided into five stages: the first three stages were poplar-birch secondary forests in different stages of recovery, the fourth stage was thespruce-fir mixed forest, and the last stage was the primary broadleaf-Korean pine forest;(2) The spatial pattern showed an aggregated distribution at a small scale and changed to a random distribution as the scale increased in poplar-birch secondary forests, but the spatial pattern appeared to be randomly distributed in spruce-fir mixed forest and broadleafKorean pine forest;(3) The interspecific associations between pioneer species and climax species changed from negative to positive among the different stand stages, and environmental resources were shared among these species. Interspecific differences in shade tolerance among the tree species were key determinants of forest dynamics and structure. Our study is vital to the understanding of the forest development; thus, the spatial change features should receive greater attention when forest management is being planned and restoration strategies are being developed for the Changbai Mountains.  相似文献   

20.
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution. We placed random plots covering different habitats and altitude to record species composition and environmental variables. Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis. Four communities, each in alpine shrub and meadows were delineated and well justified in the ordination plots. Indicator species for the different communities were identified. Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows. Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows. Soil variables explained higher variability (∼35%) than spatial variables (∼21%) in both shrubs and meadows. Altitude, among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation. About 40% variations left unexplained. Latitude and species diversity among the other variables had significant correlation with ordination axes. Study showed that altitude and C/N ratio played a significant role in species composition. Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号