首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fast forward interplanetary (IP) shocks have been identified as a source of large geomagnetic disturbances. However, the shocks can evolve in the solar wind, they are modified by interaction with the bow shock and during their propagation through the magnetosheath. A few previous papers refer the inclination and deceleration of the IP shock front in this region. Our contribution continues this effort and presents the study of an IP shock interaction with the bow shock. Since the bow shock is a reversed fast shock, the interaction of the IP shock and bow shock is a problem of interaction of two fast MHD shocks.

We compare profiles of magnetic field and plasma parameters observed by several spacecraft in the solar wind and magnetosheath with the profiles of the same parameters resulting from the MHD numerical model. The MHD model suggests that the interaction of an IP shock with the bow shock results in an inward bow shock displacement that is followed by its outward motion. Such motion will result in an indentation propagating along the bow shock surface. This scenario is confirmed by multipoint observations. Moreover, the model confirms also previous suggestions on the IP shock deceleration in the magnetosheath.  相似文献   


2.
We have analyze the set of 70 intense geomagnetic storms associatedwith Dst decrease of more than 100 nT, observed duringthe period (1986–1991). We have compile these selected intensegeomagnetic storm events and find out their association with twotypes of solar wind streams and different interplanetary parameters.We concluded that the maximum numbers of intense geomagneticstorms are associated with transient disturbances in solar wind streams,which causes strong interplanetary shocks in interplanetary medium.The association of supersonic shocks and magnetic clouds with intensegeomagnetic storms have also been discussed.  相似文献   

3.
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.  相似文献   

4.
Plasma and magnetic field parameter variations across fast forward interplanetary shocks are analyzed during the last solar cycle minimum (1995–1996, 15 shocks), and maximum year 2000 (50 shocks). It was observed that the solar wind velocity and magnetic field strength variation across the shocks were the parameters better correlated with Dst. Superposed epoch analysis centered on the shock showed that, during solar minimum, B z profiles had a southward, long-duration variation superposed with fluctuations, whereas in solar maximum the B z profile presented 2 peaks. The first peak occurred 4 hr after the shock, and seems to be associated with the magnetic field disturbed by the shock in the sheath region. The second peak occurred 19 hr after the shock, and seems to be associated with the ejecta fields. The difference in shape and peak in solar maximum (Dst peak =−50 nT, moderate activity) and minimum (Dst peak =−30 nT, weak activity) in average Dst profiles after shocks are, probably, a consequence of the energy injection in the magnetosphere being driven by different interplanetary southward magnetic structures. A statistical distribution of geomagnetic activity levels following interplanetary shocks was also obtained. It was observed that during solar maximum, 36% of interplanetary shocks were followed by intense (Dst≤−100 nT) and 28% by moderate (−50≤Dst <−100 nT) geomagnetic activity. During solar minimum, 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity, respectively. Thus, during solar maximum a higher relative number of interplanetary shocks might be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50–60% to be followed by intense/moderate geomagnetic activity.  相似文献   

5.

Forbush decreases (FDs) are sharp reductions of the cosmic-ray (CR) intensity, following intense solar activity such as coronal mass ejections (CMEs) and their corresponding interplanetary shocks. In some cases, shocks create sudden storm commencements (SSCs) at the Earth’s magnetosphere with significant interest for space-weather studies. Preincreases and/or predecreases of CR intensity before the onset of FDs, known as precursory signals, have been widely examined by many authors. In this work, an attempt to define precursory signals that are not related to SSCs is presented. For the present analysis, CR data recorded by the ground-based Neutron Monitor Network as well as data on solar flares, CMEs, solar-wind speed, interplanetary magnetic field, and geomagnetic indices for the years 1969?–?2019 are used. To identify FDs that present precursors, the adopted criteria are mainly the FD amplitude (> 2%) and the equatorial CR anisotropy before the onset time (> 0.8%). The analysis of FDs and the study of their asymptotic-longitude CR distribution for precursors are based on the Global Survey Method and the Ring of Stations Method, respectively. Precursory signals are identified in 17 out of 27 events without SSCs.

  相似文献   

6.
Forecasting space weather more accurately from solar observations requires an understanding of the variations in physical properties of interplanetary (IP) shocks as solar activity changes. We examined the characteristics (occurrence rate, physical parameters, and types of shock driver) of IP shocks. During the period of 1995 – 2001, a total of 249 forward IP shocks were observed. In calculating the shock parameters, we used the solar wind data from Wind at the solar minimum period (1995 – 1997) and from ACE since 1998 including the solar maximum period (1999 – 2001). Most of IP shocks (68%) are concentrated in the solar maximum period. The values of physical quantities of IP shocks, such as the shock speed, the sonic Mach number, and the ratio of plasma density compression, are larger at solar maximum than at solar minimum. However, the ratio of IMF compression is larger at solar minimum. The IP shock drivers are classified into four groups: magnetic clouds (MCs), ejecta, high speed streams (HSSs), and unidentified drivers. The MC is the most dominant and strong shock driver and 150 out of total 249 IP shocks are driven by MCs. The MC is a principal and very effective shock driver not only at solar maximum but also at solar minimum, in contrast to results from previous studies, where the HSS is considered as the dominant IP shock driver.  相似文献   

7.
Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.  相似文献   

8.
A New Prediction Method for the Arrival Time of Interplanetary Shocks   总被引:3,自引:0,他引:3  
Solar transient activities such as solar flares, disappearing filaments, and coronal mass ejections (CMEs) are solar manifestations of interplanetary (IP) disturbances. Forecasting the arrival time at the near Earth space of the associated interplanetary shocks following these solar disturbances is an important aspect in space weather forecasting because the shock arrival usually marks the geomagnetic storm sudden commencement (SSC) when the IMF Bz component is appropriately southward and/or the solar wind dynamic pressure behind the shock is sufficiently large. Combining the analytical study for the propagation of the blast wave from a point source in a moving, steady-state, medium with variable density (wei, 1982; wei and dryer 1991) with the energy estimation method in the ISPM model (smith and dryer 1990, 1995), we present a new shock propagation model (called SPM below) for predicting the arrival time of interplanetary shocks at Earth. The duration of the X-ray flare, the initial shock speed and the total energy of the transient event are used for predicting the arrival of the associated shocks in our model. Especially, the background speed, i.e., the convection effect of the solar wind is considered in this model. Applying this model to 165 solar events during the periods of January 1979 to October 1989 and February 1997 to August 2002, we found that our model could be practically equivalent to the prevalent models of STOA, ISPM and HAFv.2 in forecasting the shock arrival time. The absolute error in the transit time in our model is not larger than those of the other three models for the same sample events. Also, the prediction test shows that the relative error of our model is ≤10% for 27.88% of all events, ≤30% for 71.52%, and ≤50% for 85.46%, which is comparable to the relative errors of the other models. These results might demonstrate a potential capability of our model in terms of real-time forecasting.  相似文献   

9.
We explore the relationship among three coronal mass ejections (CMEs), observed on 28 October 2003, 7 November 2004, and 20 January 2005, the type II burst-associated shock waves in the corona and solar wind, as well as the arrival of their related shock waves and magnetic clouds at 1 AU. Using six different coronal/interplanetary density models, we calculate the speeds of shocks from the frequency drifts observed in metric and decametric radio wave data. We compare these speeds with the velocity of the CMEs as observed in the plane-of-the-sky white-light observations and calculated with a cone model for the 7 November 2004 event. We then follow the propagation of the ejecta using Interplanetary Scintillation measurements, which were available for the 7 November 2004 and 20 January 2005 events. Finally, we calculate the travel time of the interplanetary shocks between the Sun and Earth and discuss the velocities obtained from the different data. This study highlights the difficulties in making velocity estimates that cover the full CME propagation time.  相似文献   

10.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

11.
A scenario is presented whereby CMEs and interplanetary shocks are consequences of a large scale rearrangement of the coronal magnetic field induced by the disconnection of field lines from the solar surface due to the emergence of flux with opposite polarity. In this scenario the CME is the mass released from the previously closed structure and the interplanetary shock is formed by the injection of faster solar wind from an extended or newly created coronal hole which results from the opening of the field lines. Here CMEs and interplanetary shocks are associated events, but not cause-effect related. Observational and computational evidence supporting this view is provided.  相似文献   

12.
Using 180 interplanetary (IP) shock events associated with coronal mass ejections (CMEs) during 1997 – 2005, we investigate the influence of the heliospheric current sheet (HCS) upon the propagation and geoeffectiveness of IP shocks. Our preliminary results are: (1) The majority of CME-driving IP shocks occurred near the HCS. (2) The numbers of shock events and related geomagnetic storms observed when the Earth and the solar source are located on the same side of the HCS, represented by f SS and f SG, respectively, are obviously higher than those when the Earth and the solar source are located on the opposite sides of the HCS, denoted by f OS and f OG, with f SS/f OS=126/54, f SG/f OG = 91/36. (3) Parameter jumps across the shock fronts for the same-side events are also higher than those for the opposite-side events, and the stronger shocks (Δ V ≥ 200 km s−1) are mainly attributed to be same-side events, with f SSh/f OSh = 28/15, where f SSh and f OSh are numbers of stronger shocks which belong to same-side events and opposite-side events, respectively. (4) The level of the geomagnetic disturbances is higher for the same-side events than for the opposite-side events. The ratio of the number of intense magnetic storms (Dst < −100) triggered by same-side events to those triggered by opposite-side events is 25/10. (5) We propose an empirical model to predict the arrival time of the shock at the Earth, whose accuracy is comparable to that of other prevailing models. These results show that the HCS is an important physical structure, which probably plays an important role in the propagation of interplanetary shocks and their geoeffectiveness.  相似文献   

13.
Geomagnetic disturbances are the results of interplanetary causes such as high-speed streamers (HSSs), interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs), and magnetic clouds. During different forms of geomagnetic disturbances, we observed changes in the count rate at neutron monitors that are kept at various locations. We studied the count rates measured by neutron monitors at four stations at various latitudes during different categories of geomagnetic events and compared them. We analysed five events: a geomagnetically quiet event, a non-storm high-intensity long-duration continuous AE activity (HILDCAA) event, a storm-preceded HILDCAA event, a geomagnetic substorm event, and a geomagnetic moderate storm event. We based our analysis on geomagnetic indices, solar wind parameters, and interplanetary magnetic field (IMF) parameters. We found that the strength of the modulation was least during the quiet event and highest during the storm-preceded HILDCAA. By analysing the cause of these geomagnetic disturbances, we related each decrease in the neutron monitor data with the corresponding solar cause. For the ICME-driven storm, we observed a decrease in neutron monitor data ranging from 6% to 12% in all stations. On the other hand, we observed a decrease ranging from 2% to 5% for the HSS-driven storm. For the non-storm HILDCAA, we observed a decrease in neutron monitor data of about 1% to 1.5%. For the quiet event, the neutron monitor data fluctuated such that there was no overall decrease in all stations.  相似文献   

14.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   

15.
Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU   总被引:1,自引:0,他引:1  
Based on the variations of sunspot numbers, we choose a 1-year interval at each solar minimum from the beginning of the acquisition of solar wind measurements in the ecliptic plane and at 1 AU. We take the period of July 2008??C?June 2009 to represent the solar minimum between Solar Cycles 23 and 24. In comparison with the previous three minima, this solar minimum has the slowest, least dense, and coolest solar wind, and the weakest magnetic field. As a result, the solar wind dynamic pressure, dawn?Cdusk electric field, and geomagnetic activity during this minimum are the weakest among the four minima. The weakening trend had already appeared during solar minimum 22/23, and it may continue into the next solar minimum. During this minimum, the galactic cosmic ray intensity reached the highest level in the space age, while the number of solar energetic proton events and the ground level enhancement events were the least. Using solar wind measurements near the Earth over 1995??C?2009, we have surveyed and characterized the large-scale solar wind structures, including fast-slow stream interaction regions (SIRs), interplanetary coronal mass ejections (ICMEs), and interplanetary shocks. Their solar cycle variations over the 15 years are studied comprehensively. In contrast with the previous minimum, we find that there are more SIRs and they recur more often during this minimum, probably because more low- and mid-latitude coronal holes and active regions emerged due to the weaker solar polar field than during the previous minimum. There are more shocks during this solar minimum, probably caused by the slower fast magnetosonic speed of the solar wind. The SIRs, ICMEs, and shocks during this minimum are generally weaker than during the previous minimum, but did not change as much as did the properties of the undisturbed solar wind.  相似文献   

16.
A time-dependent, nonplanar, two-dimensional magnetohydrodynamic computer model is used to simulate a series, separately examined, of solar flare-generated shock waves and their subsequent disturbances in interplanetary space between the Sun and the Earth's magnetosphere. The ‘canonical’ or ansatz series of shock waves include initial velocities near the Sun over the range 500 to 3500 km s?1. The ambient solar wind, through which they propagate, is taken to be a steady-state homogeneous plasma (that is, independent of heliolongitude) with a representative set of plasma and magnetic field parameters. Complete sets of solar wind plasma and magnetic field parameters are presented and discussed. Particular attention is addressed to the MHD model's ability to address fundamental operational questions vis-à-vis the long-range forecasting of geomagnetic disturbances. These questions are: (i) will a disturbance (such as the present canonical series of solar flare shock waves) produce a magnetospheric and ionospheric disturbance, and, if so, (ii) when will it start, (iii) how severe will it be, and (iv) how long will it last? The model's output is used to compute various solar wind indices of current interest as a demonstration of the model's potential for providing ‘answers’ to these questions.  相似文献   

17.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

18.
The magnetic field measurements made by the magnetic field experiment on the IMP 3 (Explorer 28) spacecraft have been examined at the time of geomagnetic s.s.c. events. Thirty-six such events occurred while IMP 3 was in the interplanetary medium during 1965, 1966 and 1967 and have been analysed. Of these events 8 must have been tangential discontinuities, 2 are either tangential discontinuities or rotational discontinuities and 26 are possible shock waves. (Two of these 26 events have been shown by other authors to be shocks.) These 26 possible shocks have similar magnetic signatures: an increase of 20 % or more in the magnetic field magnitude and a relatively small (always less than 90°) change in direction. The larger s.s.c. events were more likely to be caused by possible shocks while the smaller events were often associated with tangential discontinuities. The orientation of the discontinuity surfaces of the 26 possible shocks shows a preference to be aligned somewhere between a direction perpendicular to the sun-earth line and a direction tangent to the local spiral angle of the magnetic field. It was possible to associate solar flares with 14 of the 26 possible shock events. Of these 14, a reliable orientation was deduced for 8 events. By considering the orientation of these 8 events in relation to the position of the parent flares on the solar disk it is suggested that a typical shock front propagating out from the sun has a radius of curvature less than but of the order of 1 AU.NAS/NRC Postdoctoral Resident Research Associate.  相似文献   

19.
The interaction of traveling fast solar shock waves with other fast shock waves generated previously is considered in terms of magnetohydrodynamics for various solar wind parameters. The shocks are not piston ones and move freely in the flow. The magnetic structure in the interplanetary magnetic field emerging after the shock interaction is shown to correspond to the well-known magnetic configuration commonly observed on spacecraft or the classical Hundhausen R model. A head-on collision of solar shock waves with the boundary of a magnetic cloud is considered. It is pointed out that a slow shockwave refracted into the magnetic cloud can appear at an oblique collision of the shock with the cloud boundary. The results clarify our understanding of the available spacecraft data.  相似文献   

20.
As suggested in many studies the pre-increases or pre-decreases of the cosmic ray intensity (known as precursors), which usually precede a Forbush decrease, could serve as a useful tool for studying space weather effects. The events in this study were chosen based on two criteria. Firstly, the heliolongitude of the solar flare associated with each cosmic ray intensity decrease was in the 50°?–70°W sector and, secondly, the values of the geomagnetic activity index, Kp max, were ≥?5. Twenty five events were selected from 1967 to 2006. We have used data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field in our detailed analysis. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “Ring of Stations” method for all the events. The results reveal clear signs of precursors in 60 % of selected events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号