首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

2.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   

3.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

4.
Dolomites from the upper calcareous-siliceous member of the Miocene Monterey Formation exposed west of Santa Barbara, California, were analysed for geochemical, isotopic and crystallographic variation. The data clearly document the progressive recrystallization of dolomite during burial diagenesis in marine pore fluids. Recrystallization is recognized by the following compositional and crystallographic variations. Dolomites have decreasing δ18O and δ13C compositions, decreasing Sr contents and increasing Mg contents with increasing burial depths and temperatures from east to west in the study area. δ18O values vary from 5·3‰ in the east to − 5·5‰ PDB in the west and are interpreted to reflect the greater extent and higher temperature of dolomite recrystallization in the west. δ13C values correlate with δ18O and decrease from 13·6‰ in the east to − 8·7‰ PDB in the west. Sr concentrations correlate positively with δ18O values and decrease from a mean of 750 ppm in the east to a mean of 250 ppm in the west. Mol% MgCO3 values inversely correlate with δ18O values and increase from a minimum of 41·0 in the east to a maximum of 51·4 in the west. Rietveld refinements of powder X-ray diffraction data indicate that the more recrystallized dolomites have more contracted unit cells and increased cation ordering. The fraction of the Ca sites in the dolomites that are occupied by Ca atoms increases slightly with the approach to stoichiometry. The fraction of the Mg sites occupied by Mg atoms strongly correlates with mol% MgCO3. Even in early diagenetic, non-stoichiometric dolomites, there is little substitution of Mg in Ca sites. During recrystallization, the amount of Mg substituting for Ca in Ca sites decreases even further. Most of the disorder in the least recrystallized, non-stoichiometric dolomites is related to substitution of excess Ca on Mg sites.  相似文献   

5.
A carbonate buildup of Middle Triassic age, the Esino Limestone, outcrops in the Southern Calcareous Alps of Lombardy (N Italy). Along its margin and within the open subtidal facies, the Esino Limestone contains calcite cement-filled cavities of cm to m size. These features, known as evinosponges, may form pervasive networks within the host rock. The filling consists of concentric, isopachous layers of fibrous low-Mg calcite crystals characterized by strong undulose extinction and bent cleavages. The cement crusts are non-luminescent under cathodoluminescence, but both cements and host rock are cross-cut by micro-fractures filled with bright-luminescent calcite, related to late void-filling sparite. Mixing of different carbonates is reflected in stable isotope data. On the hand specimen scale, the oxygen and carbon isotope compositions of cements and host rock show little variation. When compared on a regional scale, the values cover a broad range from δ18O(PDB)=?5‰ to ?12‰ and from δ13O =0‰ to +3‰. The linear covariant trends defined by the oxygen and carbon isotope data for different sampling regions reflect the admixture of late, isotopically depleted calcite with an isotopically enriched non-luminescent calcite of early diagenetic origin. The Esino Limestone fibrous cements, which were probably precipitated in the marine or marine-meteoric phreatic environment, were affected by late diagenetic processes that caused mineral deformation and isotopic depletion through recrystallization and the admixture of a later calcite. These later calcites precipitated from penetrative fluids possibly related to Late Triassic volcanic activity and/or to the Late Cretaceous/Early Palaeogene alpine orogeny.  相似文献   

6.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

7.
In this study, the stable isotope and trace element geochemistries of meteoric cements in Pleistocene limestones from Enewetak Atoll (western Pacific Ocean), Cat Island (Bahamas), and Yucatan were characterized to help interpret similar cements in ancient rocks. Meteoric calcite cements have a narrow range of δ18O values and a broad range of δ13C values in each geographical province. These Pleistocene cements were precipitated from water with stable oxygen isotopic compositions similar to modern rainwater in each location. Enewetak calcite cements have a mean δ18O composition of ?6.5%0 (PDB) and δ13C values ranging from ?9.6 to +0.4%0 (PDB). Sparry calcite cements from Cat Island have a mean δ18O composition of ?4.1%0 and δ13C values ranging from ?6.3 to + 1.1%0. Sparry cements from Yucatan have a mean δ18O composition of ?5.7%0 and δ13C values of ?8.0 to ?2.7%0. The mean δ18O values of these Pleistocene meteoric calcite cements vary by 2.4%0 due to climatic variations not related directly to latitude. The δ13C compositions of meteoric cements are distinctly lower than those of the depositional sediments. Variations in δ13C are not simply a function of distance below an exposure surface. Meteoric phreatic cements often have δ13C compositions of less than —4.0%0, which suggests that soil-derived CO2 and organic material were washed into the water table penecontemporaneous with precipitation of phreatic cements. Concentrations of strontium and magnesium are quite variable within and between the three geographical provinces. Mean strontium concentrations for sparry calcite cements are, for Enewetak Atoll, 620 ppm (σ= 510 ppm); for Cat Island, 1200 ppm (σ= 980 ppm); and for Yucatan, 700 ppm (σ= 390 ppm). Equant cements, intraskeletal cements, and Bahamian cements have higher mean strontium concentrations than other cements. Equant and intraskeletal cements probably precipitated in more closed or stagnant aqueous environments. Bahamian depositional sediments had higher strontium concentrations which probably caused high strontium concentrations in their cements. Magnesium concentrations in Pleistocene meteoric cements are similar in samples from Enewetak Atoll (mean =1.00 mol% MgCO3; σ= 0.60 mol% MgCO3) and Cat Island (mean = 0.84 mol% MgCO3; σ= 0.52mol% MgCO3) but Yucatan samples have higher magnesium concentrations (mean = 2.20 mol% MgCO3: σ= 0.84mol% MgCO3). Higher magnesium concentrations in some Yucatan cements probably reflect precipitation in environments where sea water mixed with fresh water.  相似文献   

8.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

9.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   

10.
Holocene beachrocks of Northeast Brazil are composed predominantly of quartz (90%) with minor carbonate fragments (6% algal detritus) and feldspars (4%). The cement shows three textural varieties: (1) calciferous, surrounding siliciclastic grains; (2) micritic, with an acicular fringe; and (3) cryptocrystalline calcite in pores. Sandstone structures and composition show evidence of submerged and low-energy beaches. Cement is formed by ~20 mol% MgCO3; the δ13C in cement ranges from ?1.3‰ to +3.5‰ PDB and δ18O varies from ?2.1 to +1.2‰PDB. The cement was precipitated under high CO2 pressure, as a result of the interaction of CaCO3? saturated seawater and nonsaturated groundwater, in a beach environment.  相似文献   

11.
UWE BRAND 《Sedimentology》1982,29(1):139-147
The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water. The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water. The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water. Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition.  相似文献   

12.
The Catalan Coastal Ranges (NE part of the Eastern Iberian Margin) correspond to a system of grabens formed at the north-western margin of the Valencia Trough. Extensional activity in the Catalan Coastal Ranges occurred at least from early to late Miocene and reactivated earlier transpressive faults related to the Palaeogene compression. In the central part of the Catalan Coastal Ranges, tectonic micro and macrostructures (faults, joints, stylolites) are well developed in the Mesozoic (mainly Cretaceous) limestones as well as in the Miocene graben fill deposits. In these rocks, seven generations of fractures, which formed during different tectonic phases, have been distinguished. Type 1–4 fractures affect only the Cretaceous limestones, type 5 and 6 fractures the Cretaceous and Miocene deposits, and type 7 fractures only the Miocene sediments. The fractures are filled with calcites, and locally with an internal sediment or a dolomite cement. The Cretaceous host-rock has an average δ18O value of –4·3‰ PDB (Peedee Belemnite), an average δ13C value of +0·6‰ PDB, a 87Sr/86Sr ratio of 0·70741, up to 5630 p.p.m. of Mg2+, up to 2615 p.p.m. of Sr2+, and up to 1560 p.p.m. of Fe2+. Type 2 fractures are related to Palaeogene compression. The calcite cement filling this type of fracture has an average δ18O value of –8·2‰ PDB, an average δ13C value of –0·6‰ PDB, a 87Sr/86Sr ratio of 0·70714, up to 4560 p.p.m. of Mg2+, up to 3275 p.p.m. of Sr2+, and up to 3540 p.p.m. of Fe2+. These results indicate a fluid characterized by a high rock–fluid interaction approaching a closed system equilibrium. Type 5 fractures are related to the syn-rift stage. The calcite cement filling this type of fracture has an average δ18O value of –6·9‰ PDB, an average δ13C value of –4·3‰ PDB, a 87Sr/86Sr ratio of 0·70787, up to 5375 p.p.m. of Mg2+, up to 1750 p.p.m. of Sr2+ and up to 2855 p.p.m. of Fe2+. These results indicate a fluid characterized by a low rock–fluid interaction and an open hydrogeological system. The cements filling the compressional fractures are characterized by undulose extinction, subgrain formation and deformed mechanical twin planes indicating formation under stressed conditions. In contrast, cements filling extensional fractures are characterized by translucent crystals with uniform extinction, indicating free growth not subjected to stress.  相似文献   

13.
The most ubiquitous syn-sedimentary cements affecting Mururoa atoll are composed of magnesian calcite. Three main types are distinguished: fibrous, bladed and sparitic on the basis of petrography, morphology and MgCO3 concentration of the constituting crystals, while peloid infills, a particular form of HMC chemical precipitation, also exist. Petrographic evidence and isotopic signatures are compatible with marine precipitation. Mururoa atoll was exposed several times to meteoric diagenesis resulting in varied diagenetic alterations including selective dissolution and partial dolomitization of Mg-calcite cements. These alterations are responsible for substantial modifications of the initial cement fabrics and may introduce unconformities in the diagenetic chronology. The first stage of the partial dissolution of Mg-calcite induces the development of chalky, white friable zones within the initially crystalline, hard cement layers. At ultrascale, this is due to the creation of micro-voids along the elongate cement fibres. Advanced dissolution includes total disappearance of cement portions as attested to by large voids within the cement crust and/or between superposed cement layers. Mg-calcite dissolution is related to meteoric diagenesis during periods of Quaternary exposure. The creation of voids within Mg-calcite layers is due to the mechanical removal of previously altered calcium carbonate, a process suggesting marine or non-marine water flow, probably in the vadose environment. Selective dolomitization of Mururoa cements involves alternations of calcite and dolomite which form successive cement-like rinds within primary cavities. At Mururoa, these alternations are the result of selective dolomitization of the pre-existing Mg-calcite cements rather than successive precipitation of calcite and dolomite. Selective dolomitization of Mg-calcite cements at Mururoa indicates that a given cement succession is not necessarily a simple chronological sequence. Oxygen isotope values of dolomites are enriched in δ186 by about 3‰ PDB within calcite-dolomite pseudo-alternations. The dolomitizing fluid at Mururoa seems similar to present marine water although some mixture with meteoric water is probable to favour dissolution associated with dolomitization.  相似文献   

14.
The sandbodies of the Bearreraig Sandstone Formation (Inner Hebrides, UK) are cemented by two generations of calcite. The first generation, an inhomogeneous ferroan calcite (0.05?3.28 mol% FeCo3) formed during sulphate reduction (δ13C =?24 to ?32%o PDB) in marine porewaters (δ18O of cement from ?1 to ?4%o PDB) at very shallow burial depths (a few centimetres). These cements are rare but form millimetre-scale clusters of crystals which acted as nuclei to the later, concretionary cements. The second generation of cements are more homogeneous ferroan calcites (mean 1?58% mol% FeCo3) which evolve to progressively higher Fe/Mg ratios. They are sourced by shell dissolution (δ13C of cement from +1 to ?3%o PDB) into meteoric (δ18O of cement from ?6 to ?10%o PDB) or mixed marine meteoric waters (δ18O of cement from ?4 to ?6%o SMOW). These were introduced into the formation either during Bathonian times as a freshwater lens, or, subsequent to partial inversion, by confined aquifer flow. Corroded feldspars within the concretions suggest that an interval of at least 8 Ma separated the deposition of the sediments from the onset of concretion growth. Abundant concretions are preferentially developed at certain horizons within the sandbodies, where the early generation of ferroan calcite cements provided nuclei. The latter formed close to the sediment-water interface, the concentration of cement within the sediment being related to sedimentation rate. The relatively high concentrations of the first generation of cement, upon which the concretionary horizons are nucleated, formed during periods of minimal sedimentation.  相似文献   

15.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

16.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

17.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

18.
Abstract

The Upper Triassic Chang 8 Member, the eighth member of the Yanchang Formation, is a key reservoir interval in the Jiyuan area of the Ordos Basin. The reservoir quality of the Chang 8 Member tight sandstones is extremely heterogeneous owing to the widespread distribution of carbonate cements. The carbonate cements commonly develop near sandstone–mudstone interfaces and gradually decrease away from the interfaces to the centres of the sand bodies. However, the content of carbonate cements (≤6%) has a positive correlation with the visual porosity in the Chang 8 Member sandstone, revealing that the carbonate cements contribute to the compaction resistance and the residual primary pores of reservoirs during the diagenetic process. Three main types of carbonate cement are identified: type I (calcite), type II (calcite and ferrocalcite), and type III (dolomite and ankerite). The type I calcite is characterised by enriched δ13C (mean –3.41‰) and δ18O (mean –15.17‰) values compared with the type II (mean δ13C?=?–7.33‰, δ18O?=?–18.90‰) and type III (mean δ13C?=?–10.0‰, δ18O?=?–20.2‰) cements. Furthermore, the mean δ18O value (–4.7‰) of the type I pore fluids is 1.5‰ and 0.9‰ lower than the type II (mean –3.2‰) and type III (mean –3.8‰) pore fluids, respectively. This indicates that the evolving pore fluids experienced some relative strong water–rock interactions that provided the original materials (e.g. Ca2+, Fe3+, and Mg2+) for the carbonate cements during the diagenetic process. The highly saline lake water directly provided the primary material for the type I calcite precipitation, which also provided the material necessary for the precipitation of the type II and type III carbonate cements, causing enriched δ18O values of the pore fluids during the precipitation of the type II and type III carbonate cements. Although the earlier dissolved pores were filled with ferrocalcite, dolomite and ankerite in the middle–late diagenetic stages, some residual pores and fractures remained to become the potential reservoir storage spaces for the oil and gas exploration in the Jiyuan area.  相似文献   

19.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

20.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号