首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
北京市PM_(2.5)中主要重金属元素污染特征及季节变化分析   总被引:3,自引:0,他引:3  
利用2005年4月18日—2008年9月27日北京市中国地质大学(东门)采样点的PM2.5质量浓度变化与重金属Cd、Pb、As、Cu及Zn等污染特征,结合最新发布的《环境空气质量标准》(GB3095—2012),初步分析了近4年时间里北京市单点PM2.5的污染水平及主要重金属污染元素的变化特征,得出了一些有意义的认识。2005年春季—2008年春季期间PM2.5质量浓度为13.1~171μg/m3之间变化,平均浓度为65.6μg/m3,超过最新环境空气质量标准制定的PM2.5年平均浓度限值35μg/m3,北京市PM2.5污染形势依然严峻。奥运会及残奥会期间PM2.5的24 h质量浓度平均值为40.7μg/m3,没有超标。北京市PM2.5中的重金属元素含量及富集特征随着不同年份不同季节差别较大,典型的城市污染元素As在冬季质量浓度最高。对比环境空气质量标准的参考浓度限值发现,As元素的质量浓度在研究期间的年均值均超过了年平均浓度参考限值0.006μg/m3。化学分析结果显示人为污染是PM2.5中Cu、Cd、Pb、Zn、As重金属污染的主要来源,其中As污染需要引起足够重视。研究结果对于北京市大气污染防治具有一定的借鉴意义。  相似文献   

2.
2008年8月和9月,北京市成功举办了第29届奥运会和第13届残奥会,对这段时间在北京市区(中国矿业大学校园综合楼五层,距奥运村3 km)采集的大气颗粒物的质量浓度和微观形貌类型进行了研究。结果表明:奥运会期间,北京市区大气PM10和PM2.5的日均质量浓度分别小于国家PM10二级标准(150μg/m3)和美国EPA的PM2.5二级标准(65μg/m3),12 h的质量浓度范围分别为7.64~81.63μg/m3和1.91~54.59μg/m3;残奥会期间,12 h的PM10质量浓度范围为33.83~106.36μg/m3,没有超标,PM2.5质量浓度变化范围为15.29~88.30μg/m3,其中出现了3 d超标天,分别为9月6日、7日和14日;从奥运期间PM2.5/PM10的比值(0.26~0.86,大部分值大于0.5)可以看出,奥运期间北京大气颗粒物以细粒子为主。与往年相比,颗粒物质量浓度出现大幅下降趋势。场发射扫描电镜观察显示,奥运会和残奥会期间样品的微观形貌类型主要有球形颗粒、烟尘集合体、不规则矿物和未知颗粒,其数量-粒径分布主要呈单峰分布,峰值均在0.1~0.2μm范围,其中球形颗粒明显占多数。各种分析数据均显示,残奥会期间样品比奥运会期间样品污染要严重。  相似文献   

3.
首次在位于渤海海峡中部的砣矶岛国家大气背景监测站连续采集大流量PM2.5样品,对2011年12月至2012年12月期间的65个样品进行了分析,包括质量浓度、有机碳、元素碳、水溶性离子、无机元素等。结果表明,砣矶岛PM2.5的年均质量浓度为54.6μg/m3(17.3~143.8μg/m3),超过国家空气质量标准(35μg/m3)。在季节变化上表现为春季与夏季高(平均浓度分别为73.6μg/m3与60.7μg/m3),分别受沙尘和山东半岛生物质燃烧的影响,而冬季最低(39.0μg/m3),与渤海地区冬季频降暴雪有关。PM2.5中24SO?、OM、3NO?、MMO是最主要的成分,分别占PM2.5质量的18.8%、16.5%、10.8%和9.4%,其次为4NH?(3.5%)和EC(3.3%)。砣矶岛PM2.5的组成较好地反映了颗粒物的主要来源及其季节变化特征,如:春季样品中Fe、Ca与Mg含量最高,与春季北方地区普遍受沙尘影响有关;夏季较高的K+浓度与OC/EC比值反映夏季风影响下山东半岛生物质燃烧对砣矶岛PM2.5的重要贡献;夏季24SO?与3NO?的异常浓度反映了二次气溶胶形成的普遍特征。此外,较高的Na+浓度与V/Ni比值表明海盐和船舶废气对砣矶岛PM2.5有一定影响。  相似文献   

4.
北京市区春季燃烧源大气颗粒物的污染水平和影响因素   总被引:17,自引:6,他引:17  
以大气中PM2.5和PM10为研究对象,于2005-03-13—25共7天的时间内,在中国地质大学(北京)测试楼顶、首钢焦化厂和首钢东门设立3个采样点进行采样监测。结果表明:PM2.5和PM10质量浓度的日变化呈现一定规律性,在不同时段PM2.5和PM10的质量浓度不尽相同,且变化较大,在特定时刻出现峰值,主要受污染源排放和气象因素的控制;PM2.5和PM10质量浓度随气温的升高而降低,这与高温有利于颗粒物扩散、低温容易形成逆温层有关;在一定的相对湿度范围内(以大气中水汽不发生重力沉降为界限),PM2.5和PM10质量浓度与相对湿度呈正相关关系;而当发生降水时,由于水滴的冲刷和附带作用,PM2.5和PM10质量浓度降低;PM2.5和PM10质量浓度与风级呈明显的负相关关系。通过北京市与国内8个省会城市的PM2.5和PM10质量浓度的对比,发现北京市PM2.5和PM10污染比较严重,PM2.5和PM10质量浓度分别超过了1996年中国制定的PM10排放标准和1997年美国EPA制定的PM2.5排放标准。  相似文献   

5.
使用大流量采样器于2013年5月至2014年4月期间采集了上海宝山的PM2.5样品,分析了其中水溶性离子(Cl–、2NO?、3NO?、4SO??、Na+、4NH?、K+、Ca2+、Mg2+)和水溶性总氮(WSTN)的浓度,探讨了水溶性有机氮(WSON)的浓度水平、季节分布及其来源特征。结果表明,上海大气PM2.5中WSON的平均浓度为1.29μg/m3,占WSTN的18%。WSON的浓度冬、春季较高,夏、秋季浓度较低,而WSON对WSTN的贡献夏季最大,秋季次之,冬季最小。主成分分析结果表明,上海PM2.5中的WSON主要来源于人为来源污染物的二次转化。潜在源分析(PSCF)的计算结果表明,夏季和冬季时上海PM2.5中的WSON主要来自浙江、安徽等地陆源污染物的输送以及上海本地的污染排放;春季和秋季时华北地区陆源污染物经由黄海的污染输送对上海PM2.5中的WSON有显著影响。  相似文献   

6.
近几年,PM2.5浓度上升导致灰霾事件频繁发生,已经引起了广泛的关注。碳组分是PM2.5中的重要组分,被认为是灰霾形成和转化的重要因素,因此,研究PM2.5中含碳组分的来源及其化学过程具有重要的意义。本研究于2016年12月至2017年8月期间在南昌地区共采集105个PM2.5样品,分析了PM2.5样品中总碳(TC)浓度及其碳同位素(δ^13C)。结果表明,采样期间TC的年平均浓度为(12.1±2.1)μg/m^3,总体上呈现冬季高、夏季低的变化趋势,可能是受不同季节气象因素和来源变化的影响。δ^13C的年平均值为(?26.1±0.2)‰,总体上呈现冬季高、春季低的变化趋势,可能是受不同来源的影响。利用贝叶斯模型计算南昌地区PM2.5中TC主要来源于C3植物燃烧和机动车尾气,年源贡献分别为49.3%和28.7%;其次是煤燃烧和C4植物燃烧,年源贡献分别为17.7%和4.2%。春季δ^13C值偏低是由于C3植物燃烧贡献相对较高,而冬季δ^13C值偏高则是煤燃烧贡献增加。  相似文献   

7.
2013年9月至2016年8月对北京市气态元素汞(GEM)进行了连续监测并分析了其含量变化特征。结果显示,监测期间大气GEM总平均浓度为(2.77±1.27)ng/m~3,高于北半球背景值浓度,且其季节变化呈现多样性。2013/9~2014/8和2015/9~2016/8年大气GEM浓度秋冬季节较高,夏季较低;2014/9~2015/8年度则为冬季最低,主要是与大气汞的来源以及季风的风向、路径和风速明显相关。大气GEM浓度日变化为夜间高、白天低。大气GEM浓度与NO_2、SO_2、PM_(2.5)等大气污染物浓度呈明显正相关,雾霾气象条件下细颗粒污染物(PM_(2.5))在低空累积及逆温气象条件易导致大气GEM浓度升高。2004年以来,北京市大气GEM浓度降低的现象与工业燃煤消费总量降低的趋势相同,表明北京市对燃煤等人为排放源的控制在很大程度上降低了大气汞浓度。  相似文献   

8.
2012年4月份对绵阳市城郊大气PM2.5进行了连续4次采样,而后利用SEM、XRD/XRF等测试手段对采集后PM2.5颗粒物矿物特性进行了分析,并利用自然沉降法和滤膜稀释法两种方法对大气微生物浓度进行了分析。采样结果表明,通常情况下所测大气中PM2.5浓度可以达到新订《环境空气质量标准》标准的要求,且雨后明显降低,风沙天气或人为焚烧则会导致PM2.5浓度大幅升高;物相分析可知,绵阳城郊大气的矿物种类主要有石英、石膏、方解石、伊利石、高岭石等;SEM分析发现,采集的PM2.5滤膜上大多为亚微米系颗粒物,且颗粒物多数表面光滑无棱角;微生物浓度分析可知,大气中粒径≤2.5μm的微生物个数偏少,约占总数的1/100。  相似文献   

9.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是广泛存在于大气中的一类毒害有机污染物.本研究采集了2018年冬、夏两季珠江三角洲9个地级市的气态和颗粒态(PM2.5)样品,分析了16种美国国家环境保护局优先控制PAHs的浓度水平和时空变化,并结合PM2.5相中的有机碳(OC)、元素碳(EC)和左旋葡聚糖浓度,使用正定矩阵因子分解(PMF)模型对PAHs进行了来源解析.∑16 PAHs的气相浓度范围为7.08~284.08 ng/m3,PM2.5相浓度范围为0.30~17.00 ng/m3,两相总浓度(37.48±41.53)ng/m3.季节特征上,∑16 PAHs气相浓度为夏高冬低,PM2.5相浓度则呈现冬高夏低,总∑16 PAHs浓度呈夏高冬低.比值法和PMF源解析结果发现,珠江三角洲9个典型城市大气的PAHs主要来自生物质燃烧(57%)、煤炭燃烧(30%)和机动车尾气排放(13%).城市周边生物质燃烧引致的PAHs污染仍需重视.健康风险评价表明,珠江三角洲大气PAHs致癌等效浓度处于较低水平(0.30~1.89 ng/m3),主要由苯并[a]芘贡献(>45%),建议重点关注.  相似文献   

10.
文中利用电感耦合等离子质谱仪(ICP-MS)对《攻坚行动方案》实施后北京市环境大气PM2.5中微量元素组成特征进行研究。结果表明,《攻坚行动方案》实施后,北京市PM2.5中微量元素以Zn、Mn、Ba、Pb、Cr、Cu、Ti等7种元素为主,其中元素Zn含量最高。元素Zn、Cd、Tl、Cs、Rb的水溶性组分在总微量元素中占比超过80%,说明这些元素大部分以易溶于水的状态存在于PM2.5中。有趣的是,在PM2.5样品中微量元素的含量(10-6)随着PM2.5污染水平的升高而下降,而质量浓度(ng·m-3)随PM2.5污染水平的升高而升高。这说明单位质量PM2.5中微量元素的含量只与颗粒物的组成成分有关,与颗粒物浓度无关。采样期间PM2.5中的微量元素主要来源于土壤扬尘(48.27%)、燃烧源和工业排放(16.16%)、刹车和轮胎磨损(10.03%),其次是汽车尾气(5.84%)、建筑扬尘(4.88%)以及其他源(3.68%)。与攻坚行动前相比,PM2.5中微量元素的质量浓度有明显的降低,高污染等级的PM2.5样品中微量元素质量浓度的降幅最为明显,比攻坚行动前下降了80.3%。  相似文献   

11.
北京市冬季大气PM2.5中多氯联苯的污染水平与分布   总被引:3,自引:2,他引:1  
2008年1月同时采集了北京市市区/交通干道(中国地质大学(北京)东门及测试楼顶)、工业区(首钢集团焦化厂、高井热电厂)和背景点(十三陵)大气颗粒物PM2.5样品。依据US EPA 1668A 方法,采用同位素稀释、高分辨率气相色谱/高分辨率质谱(HRGC/MS)联用技术,对比分析了PM2.5中19种多氯联苯(PCBs)的质量浓度、分布特征及来源。结果表明, 5个采样点PM2.5的质量浓度范围为101.85~145.57 μg/m3,日均值为119 μg/m3,比美国1997年制定的日均标准(65 μg/m3 )高83%,属严重污染。 PM2.5中∑PCBs的质量浓度和毒性当量(TEQ)分别为7.2~16.2 pg/m3 (平均值10.9 pg/m3)、8.29~17.81 fgWHO-TEQ/m3 (平均值13.58 fgWHO-TEQ/m3),与其他国家和地区比较,北京市大气PCBs的污染处于较低水平。PCBs最高浓度出现在工业区,其次是市区,背景点最低,化石燃料的不完全燃烧是北京市PCBs的主要来源。研究成果将为北京市大气环境中持久性有机污染物(POPs)的污染防治提供科学依据。   相似文献   

12.
北京市有机氯农药填图与风险评价   总被引:2,自引:0,他引:2  
采用1个样/km2的密度、1个分析组合样/16km2的方法,对北京市784km2范围内的土壤、大气干湿沉降物、大气颗粒物中HCH、DDT的含量和空间分布特征进行有机氯农药填图.查明2000年北京市地表土壤HCH和DDT的平均含量分别为8.80±11.83ng/g、108.99±301.90ng/g.2006年大气干湿沉降物中HCH和DDT平均含量分别为10.09±9.60ng/g、12.99±13.51ng/g,HCH和DDT的年沉降通量分别为996.57±939.96g/a·km2、1291.53±1342.28g/a·km2.2006年大气颗粒物PM10和PM2.5中的HCH含量分别为0.294±0.205ng/m3和0.217±0.137ng/m3,DDT的平均含量分别为1.037±1.301ng/m3和0.522±0.773ng/m3,显著高于2002-2003年度大气颗粒物中HCH(PM100.01786ng/m3,PM250.01731ng/m3)和DDT(PM100.01672ng/m3,PM2.50.02353ng/m3)的含量,表明北京市或周边地区仍在使用含HCH和DDT化学成分的农药.以2000年北京地表土壤和2006年大气干湿沉降物中HCH和DDT的含量为基础,对2020年土壤中HCH和DDT的时空演变的预测显示,即使干湿沉降物中HCH和DDT的沉降通量每年以5%的速率递减,到2020年土壤中HCH和DDT的环境质量仍不能显著改善,而控制和削减北京及周边地区含HCH和DDT成分农药的使用将是改善北京地表土壤环境质量的关键措施.  相似文献   

13.
北京市大气PM10中有机污染物的分布特征   总被引:8,自引:7,他引:1  
大气有机污染物直接影响着人类的健康及其赖以生存的环境。通过采集北京市2005年春、夏、秋、冬4季不同功能区的大气PM10样品,经索氏抽提分离得到饱和烃、芳香烃、非烃、沥青质4 个组分,对不同功能区不同季节大气有机物污染水平及其分布特征进行探讨。结果表明: 大气PM10中有机物年均质量浓度达41.39 μg/m3,为清洁对照点十三陵的1.4倍;一年中,冬季污染最严重,PM10中有机污染物的质量浓度达67.04 μg/m3,为春季的1.倍、秋季的2.1倍、夏季的4.5倍;有机组分含量呈现非烃>沥青质>芳烃>饱和烃的变化趋势,说明燃煤污染在北京市大气有机污染中仍然起主导作用;各功能区的有机污染程度不同,表现出工业区(商业区)>居民区(交通区)>清洁区的特点,但不同季节的变化不完全一致;不同功能区有机组分的比例体现出不同污染源的相对影响。  相似文献   

14.
基于2012年消融期6~9月在祁连山老虎沟12号冰川采集冰川融水径流样品,分析探讨冰川融水中粉尘颗粒物对融水理化性质的影响。结果表明,粉尘特征在消融期的变化很好地反映了冰川消融过程,融水中粉尘浓度和粒径众数在冰川强烈消融期的7月份表现为最高。粉尘体积粒径分布主要包括大气气溶胶超细颗粒(0~3.0 μm,主要为PM 2.5),大气粉尘颗粒(3.0~20 μm),以及局地源的粗颗粒(20~100 μm);对雪冰消融释放的粉尘部分(3.0~20 μm)粒径分布正态拟合结果说明,融水中粉尘颗粒物有很大部分来源于积雪中的粉尘运移所致。同时,融水中化学离子相对组成及其浓度消融期变化都与粉尘有较好的一致性,意味着粉尘对融水化学要素有重要影响。此外,pH值和电导率(EC)消融期的变化也反映了粉尘对融水物理指标的影响。在粉尘浓度较高时,融水pH值和电导率也表现出高值;融水径流中的悬移质颗粒物(SPM)浓度和溶解质固体(TDS)浓度具有较为一致的变化过程,反映了粉尘对于融水中溶解质含量也有较大影响。  相似文献   

15.

In arid and semiarid regions from the southwestern USA and vast areas of northwestern Mexico, Santa Ana wind events modify the environment with high temperatures, very low humidity, and dust storms representing a recurrent phenomenon that triggers asthma and other respiratory diseases. While research has emphasized Santa Ana wind effects on the USA side, northwestern Mexico has been less investigated. Numerical modeling of a severe dust storm in November 2018, applying the Weather Research and Forecasting model coupled with a chemistry module (WRF-Chem), revealed that erosion, transport, and dust storms extend along the peninsula and the Gulf of California. Santa Ana winds eroded large areas, transported desert conditions to urban zones, causing high dust concentrations and reducing the relative humidity below 10%, deteriorating climatic conditions favorable to wellness. In Tijuana, Mexicali, Ensenada, San Diego, and Los Angeles, PM10 and PM2.5 concentrations (particle matter with diameter below 10 µm and 2.5 µm) reached values over 2000 µg/m3 for PM10, with daily mean concentrations well above national standards, leading to poor air quality and representing a health threat even in short-term exposure. This Santa Ana event transported dust particles several hundreds of kilometers over urban areas, the Gulf of California, and the Pacific Ocean. Severe soil deterioration was simulated within the study area, reaching dust emissions above 700,000 t, including croplands from the northern part of Baja California and Sonora's coastal area.

  相似文献   

16.
张艳阁  徐建中  余光明 《冰川冻土》2017,39(5):1022-1028
为了研究青藏高原东北缘老虎沟地区大气颗粒物中水溶性无机离子组分的变化特征,于2016年7月16日至8月11日共采集13个PM2.5样品和4套粒径分级样品。研究结果显示:非沙尘期间,水溶性离子总质量浓度为2.35 μg·m-3,主要离子SO42-、Ca2+、NH4+和NO3-的浓度分别为1.28、0.33、0.32和0.28 μg·m-3,约占水溶性离子浓度总和的94%;沙尘期间,水溶性无机离子总质量浓度为12.63 μg·m-3,是非沙尘期间浓度的5倍,主要离子SO42-、Ca2+、Cl-、Na+和NO3-的浓度依次为5.36、4.77、0.80、0.62和0.61 μg·m-3,约占水溶性离子浓度总和的96%。分级样品分析结果表明,NO3-主要分布在粗颗粒模态,可能是前体物在粉尘表面发生非均相反应产生。在沙尘时期,SO42-主要为粉尘贡献,集中分布在粗颗粒模态。在非沙尘时期,SO42-在粗颗粒模态和积聚模态都有较多的分布。积聚模态的SO42-主要是通过前体物与NH3发生均相反应产生。据估算,非沙尘时期的二次反应对PM2.5中SO42-的贡献约为80%。  相似文献   

17.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号