首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

2.
We investigate the relevance of the Yarkovsky effect for the origin of kilometer and multikilometer near-Earth asteroids (NEAs). The Yarkovsky effect causes a slow migration in semimajor axis of main belt asteroids, some of which are therefore captured into powerful resonances and transported to the NEA space. With an innovative simulation scheme, we determine that in the current steady-state situation 100-160 bodies with H < 18 (roughly larger than 1 km) enter the 3/1 resonance per million years and 40-60 enter the ν6 resonance. The ranges are due to uncertainties on relevant simulation parameters such as the time scales for collisional disruption and reorientation, their size dependence, and the strength of the Yarkovsky and YORP effects. These flux rates to the resonances are consistent with those independently derived by Bottke et al. (2002, Icarus 156, 399-433) with considerations based only on the NEA orbital distribution and dynamical lifetime. Our results have been obtained assuming that the main belt contains 1,300,000 asteroids with H < 18 and linearly scale with this number. Assuming that the cumulative magnitude distribution of main belt asteroids is N(< H) ∝ 10γ′H with γ′ = 0.25 in the 15.5 < H < 18 range (consistent with the results of the SDSS survey), we obtain that the bodies captured into the resonances should have a similar magnitude distribution, but with exponent coefficient γ = 0.33-0.40. The lowest value is obtained taking into account the YORP effect, while higher values correspond to a weakened YORP or to YORP-less cases. These values of γ are all compatible with the debiased magnitude distributions of the NEAs according to Rabinowitz et al. (2000, Nature 403, 165-166), Bottke et al. (2000b, Science 288, 2190-2194), and Stuart (2001, Science 294, 1691-1693). Hence the Yarkovsky and YORP effects allow us to understand why the magnitude distribution of NEAs is only moderately steeper than that of the main belt population. The steepest main belt distribution that would still be compatible with the NEA distribution has exponent coefficient γ′ ∼ 0.3.  相似文献   

3.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   

4.
We show that, over the next two decades, the current radar and optical astrometric technology is adequate to allow detection of the Yarkovsky effect acting on at least two dozen NEAs from a variety of orbital regimes and with effective diameters ranging from about ten meters up to several kilometers. The Yarkovsky effect will likely be detected for objects of rarer spectral types X, C, and E, as well as the more common S and Q. The next predicted detection of the Yarkovsky effect is for 4179 Toutatis in October 2004, which would be also the first multi-kilometer case. The Asteroid 25143 Itokawa, with a likely detection at the end of 2005, could offer an important test due to the independent “ground-truth” measurements of the asteroid mass and surface thermal inertia expected from the Hayabusa spacecraft. Earth co-orbital asteroids (e.g., 2000 PH5 or 2003 YN107) are the best placed for rapid determination of the Yarkovsky effect, and the timespan between discovery of the object and detection of the Yarkovsky effect may be as short as 3 years. By 2012, the motion of potential Earth impactor (29075) 1950 DA will likely reveal the magnitude of the Yarkovsky effect, which in turn will identify which of two possible pole orientations is correct. Vis-a-vis the 2880 impact, this new information will allow a substantial improvement in the quality of long term predictions.  相似文献   

5.
The orbital parameters of small asteroids change with time, as a consequence of the so-called Yarkovsky effect. This leads to a steady removal of objects from the Main Belt, which takes place when the objects reach one of the major resonant regions in the orbital elements space. The process may influence the evolution of the inventory and size distribution of Main Belt asteroids, but it has not been taken into account by classical models of the collisional evolution of the asteroid population. In this paper we discuss the role of the Yarkovsky effect in producing the current observed size distribution. We show that adding Yarkovsky effect to purely collisional mechanisms may increase the removal of objects at sizes around 1 km by a factor of about 2 with respect to a purely collisional scenario. Moreover, waves in the size distribution may also be produced. However, taking also into account current uncertainties in the efficiency of purely collisional mechanisms, the role of the Yarkovsky effect seems not dominant, and cannot be unambiguously determined.  相似文献   

6.
Applications of the 42m European Extremely Large Telescope (E–ELT) for the physical characterization of asteroids is presented. In particular, this work focuses on the determination of sizes and other physical properties of asteroids from measurements of their heat emission in the thermal infrared (>5 μm). Here we show that E–ELT will be best suited for the physical characterization of some selected asteroids of particular interest, as for instance: (i) targets of sample return missions to near-Earth Asteroids (NEAs); (ii) km and sub-km binary asteroids for which size information will allow their bulk density to be derived; (iii) sizes and values of the thermal inertia of potentially hazardous asteroids (PHAs). These two parameters both affect the Yarkovsky effect, which plays a role in the orbital evolution of km sized asteroids and represents a large source of uncertainty in the Earth impact probability prediction of some PHAs. Thermal inertia is also a sensitive indicator for the presence or absence of thermal insulating regolith on the surface of atmosphere-less bodies. Knowledge of this parameter is thus important for the design and the development of lander- and sample return-missions to asteroids. The E–ELT will also be able to spatially resolve asteroids and detect binaries in a range of sizes that are at present not accessible to present day adaptive optics.  相似文献   

7.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

8.
This article describes a citizen‐science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near‐Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image bound‐aries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near‐Earth asteroids. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

10.
The size distribution of main belt of asteroids is determined primarily by collisional processes. Large asteroids break up and form smaller asteroids in a collisional cascade, with the outcome controlled by the strength-size relationship for asteroids. In addition to collisional processes, the non-collisional removal of asteroids from the main belt (and their insertion into the near-Earth asteroid (NEA) population) is critical, and involves several effects: strong resonances increase the orbital eccentricity of asteroids and cause them to enter the inner planet region; chaotic diffusion by numerous weak resonances causes a slow leak of asteroids into the Mars- and Earth-crossing populations; and the Yarkovsky effect, a radiation force on asteroids, is the primary process that drives asteroids into these resonant escape routes. Yarkovsky drift is size-dependent and can modify the main-belt size distribution. The NEA size distribution is primarily determined by its source, the main-belt population, and by the size-dependent processes that deliver bodies from the main belt. All of these effects are simulated in a numerical collisional evolution model that incorporates removal by non-collisional processes. We test our model against a wide range of observational constraints, such as the observed main-belt and NEA size distributions, the number of asteroid families, the preserved basaltic crust of Vesta and its large south-pole impact basin, the cosmic ray exposure ages of meteorites, and the cratering records on asteroids. We find a strength-size relationship for main-belt asteroids and non-collisional removal rates from the main belt such that our model fits these constraints as best as possible within the parameter space we explore. Our results are consistent with other independent estimates of strength and removal rates.  相似文献   

11.
311P/PANSTARRS是一颗活动小行星, 具有小行星和彗星的双重特征, 是中国``天问二号''的探测目标之一. 311P/PANSTARRS直径较小, 约为400 m, 非引力效应可能会对其长期动力学演化产生较大的影响. 通过假定不同表面组分, 研究了Yarkovsky效应对311P/PANSTARRS轨道演化的影响, 讨论了密近交汇、 非破坏性碰撞和YORP (Yarkovsky-O''Keefe-Radzievskii-Paddack)效应等非引力效应, 计算了小行星与大行星密近交汇及碰撞概率, 估计了311P/PANSTARRS达到自转周期分裂极限的时标. 模拟结果显示与纯引力模型相比, Yarkovsky效应可能会加快311P/PANSTARRS离开当前共振区域, 大约在10Myr以后311P/PANSTARRS会离开当前所在共振带, 在表面覆盖风化层的情况下有机会通过v6长期共振成为越火小行星; 在考虑YORP效应的情况下, 311P/PANSTARRS在2 Myr时标内可达到自转周期分裂极限; 在考虑Yarkovsky效应及YORP效应等因素的情况下, 311P/PANSTARRS在10 Myr时标内仍可保持其动力学稳定性, 且YORP效应不会显著影响其半长径偏移量.  相似文献   

12.
Near-Earth Asteroids (NEAs) offer insight into a size range of objects that are not easily observed in the main asteroid belt. Previous studies on the diversity of the NEA population have relied primarily on modeling and statistical analysis to determine asteroid compositions. Olivine and pyroxene, the dominant minerals in most asteroids, have characteristic absorption features in the visible and near-infrared (VISNIR) wavelengths that can be used to determine their compositions and abundances. However, formulas previously used for deriving compositions do not work very well for ordinary chondrite assemblages. Because two-thirds of NEAs have ordinary chondrite-like spectral parameters, it is essential to determine accurate mineralogies. Here we determine the band area ratios and Band I centers of 72 NEAs with visible and near-infrared spectra and use new calibrations to derive the mineralogies 47 of these NEAs with ordinary chondrite-like spectral parameters. Our results indicate that the majority of NEAs have LL-chondrite mineralogies. This is consistent with results from previous studies but continues to be in conflict with the population of recovered ordinary chondrites, of which H chondrites are the most abundant. To look for potential correlations between asteroid size, composition, and source region, we use a dynamical model to determine the most probable source region of each NEA. Model results indicate that NEAs with LL chondrite mineralogies appear to be preferentially derived from the ν6 secular resonance. This supports the hypothesis that the Flora family, which lies near the ν6 resonance, is the source of the LL chondrites. With the exception of basaltic achondrites, NEAs with non-chondrite spectral parameters are slightly less likely to be derived from the ν6 resonance than NEAs with chondrite-like mineralogies. The population of NEAs with H, L, and LL chondrite mineralogies does not appear to be influenced by size, which would suggest that ordinary chondrites are not preferentially sourced from meter-sized objects due to Yarkovsky effect.  相似文献   

13.
The distribution of axial rotation velocities of near-Earth asteroids (NEAs) substantially differs from that of the Main-Belt asteroids by an excess of both quickly and slowly rotating objects. Among the possible causes of this difference is the influence of the solar radiation—the so-called YORP effect—that arises from the absorption of solar energy and its reemission in the thermal range by a rotating body of irregular shape. It is known that the magnitude of this effect depends on the asteroid size and the quantity of received solar energy (the insolation). Analysis of the observational data showed that the mean diameter of NEAs decreases from the middle of the distribution to the edges, i.e., the excess of both slowly (ω ≤ 2 rev/day) and quickly (ω = 8–11 rev/day) rotating objects is formed due to the asteroids with sizes smaller than those in the middle of the distribution, which agrees well with the influence of the YORP effect. Moreover, the dependence of the axial rotation velocity of NEAs on the relative insolation shows that, for the NEAs referred to, both excesses are found in orbits where, on average, they receive 8–10% more solar energy than the NEAs in the middle of the distribution. This result also agrees with the character of the influence of the YORP effect and can be considered as an additional argument in its support. Thus, the study showed that one can infer that the currently available observational data suggest the possible influence of the YORP effect on the axial rotation of the near-Earth asteroids having sizes of D ~ 2 km and less. This is the first attempt to find the influence of the YORP effect on the axial rotation of the NEA family as a whole.  相似文献   

14.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

15.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

16.
We present the results of thermal-infrared observations of 20 near-Earth asteroids (NEAs) obtained in the period March 2000-February 2002 with the 10-m Keck-I telescope on Mauna Kea, Hawaii. The measured fluxes have been fitted with thermal-model emission continua to determine sizes and albedos. This work increases the number of NEAs having measured albedos by 35%. The spread of albedos derived is very large (pv=0.02−0.55); the mean value is 0.25, which is much higher than that of observed main-belt asteroids. In most cases the albedos are in the ranges expected for the spectral types, although some exceptions are evident. Our results are consistent with a trend of increasing albedo with decreasing size for S-type asteroids with diameters below 20 km. A number of objects are found to have unexpectedly low apparent color temperatures, which may reflect unusual thermal properties. However, the results from our limited sample suggest that high thermal-inertia, regolith-free objects may be uncommon, even amongst NEAs with diameters of less than 1 km. We discuss the significance of our results in the light of information on these NEAs taken from the literature and the uncertainties inherent in applying thermal models to near-Earth asteroids.  相似文献   

17.
18.
A scientific collaboration between TÜB?TAK National Observatory (Turkey), Kazan State University (Russia) and Nikolaev Astronomical Observatory (Ukraine) involves observations of minor planets and near-Earth asteroids (NEAs) with the 1.5 m Russian-Turkish telescope (RTT150). Regular observations of selected asteroids in the range of 11-18 magnitudes began in 2004 with the view of determining masses of selected asteroids, improving the orbits of the NEAs, and studying physical characteristics of selected asteroids from photometric observations. More than 3000 positions of 53 selected asteroids and 11 NEAs have been obtained with an internal error in the range of 30-300 mas for a single determination. Photometric reductions of more than 4000 CCD frames are in progress. Masses of 21 asteroids were estimated through dynamical method using the ground-based optical observations, mainly from the RTT150 and Minor Planet Center. A comparison of the observational results from the RTT150 in 2004-2005 with observations of the same objects at other observatories allows us to conclude that RTT150 can be used for ground-based support in astrometry for the space mission GAIA.  相似文献   

19.
Asteroid families are believed to originate by catastrophic disruptions of large asteroids. They are nowadays identified as clusters in the proper orbital elements space. The proper elements are analytically defined as constants of motion of a suitably simplified dynamical system. Indeed, they are generally nearly constant on a 107-108-year time scale. Over longer time intervals, however, they may significantly change, reflecting the accumulation of the tiny nonperiodic evolutions provided by chaos and nonconservative forces. The most important effects leading to a change of the proper orbital elements are (i) the chaotic diffusion in narrow mean motion resonances, (ii) the Yarkovsky nongravitational force, and (iii) the gravitational impulses received at close approaches with large asteroids. A natural question then arises: How are the size and shape of an asteroid family modified due to evolution of the proper orbital elements of its members over the family age? In this paper, we concentrate on the dynamical dispersion of the proper eccentricity and inclination, which occurs due to (i), but with the help of (ii) and (iii). We choose the Flora family as a model case because it is unusually dispersed in eccentricity and inclination and, being located in the inner main belt, is intersected by a large number of effective mean motion resonances with Mars and Jupiter. Our results suggest that the Flora family dynamically disperses on a few 108-year time scale and that its age may be significantly less than 109 years. We discuss the possibility that the parent bodies of the Flora family and of the ordinary L chondrite meteorites are the same object. In a broader sense, this work suggests that the common belief that the present asteroid families are simple images of their primordial dynamical structure should be revised.  相似文献   

20.
J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234) developed a nonlinearized, finite-difference solution to the heat equation that yields orbital rates of change due to the Yarkovsky effect for small, spherical, bare-rock asteroids and used it to investigate changes in semimajor axis caused by the Yarkovsky effect. Here, we present results for changes in eccentricity and longitude of periapse. These results may be useful as benchmarks for simplified analytical solutions. Moreover, we explore a range of parameters, some of which are inaccessible to most other approaches. Instantaneous rates can be quite fast: For a 1-m scale body rotating with a 5-h period, de/dt can be as fast as 0.1 per million years (da/dt rates for similar test bodies were reported in J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234)). For more typical rotation periods, these rates would be considerably slower. Output from our calculation method could be used in simulations of asteroid population evolution such as that by W. F. Bottke, D. P. Rubincam, and J. A. Burns (2000, Icarus145, 301-331). On long time scales, impacts would randomize the spin axis before significant orbital evolution could occur. Nevertheless, occasional favorable rotation states might persist long enough for substantial eccentricity changes to accumulate (1) if the body is decoupled from the main belt (e.g., many near-Earth asteroids), (2) if the population of very small (mm-scale) main-belt impactors is less than expected, or (3) if our numerical results are scaled up to km-size bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号