首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

2.
The glacial deposits at the Boyne Bay Limestone Quarry near Portsoy, a key Quaternary Site of Special Scientific Interest, comprise (i) a sandy, partly weathered diamicton (Craig of Boyne Till Formation, CBTF) resting on decomposed bedrock, (ii) a central, variably glaciotectonised assemblage of dark clay, diamicton and sand, with rafts of sand and weathered diamicton (Whitehills Glacigenic Formation, WGF), and (iii) an upper dark sandy diamicton (Old Hythe Till Formation, OHTF). The CBTF was probably derived from the west or southwest, and the WGF from seawards. Structures within the OHTF conform to deposition by east‐ or southeast‐moving ice from the Moray Firth, but some erratics indicate derivation from the south. The CBTF is believed to pre‐date the last (lpswichian) interglacial, but the WGF and OHTF both post‐date the early Middle Devensian, and are probably of Late Devensian age. It is proposed that the OHTF was deposited by ice from inland which was directed eastwards near the coast by a vigorous glacier in the Moray Firth, and that the complex, Late Devensian glacial history of the south coast of the Moray Firth as a whole is the result of the interplay of these two contemporary ice‐masses. British Geological Survey. © NERC 2000.  相似文献   

3.
Lusardi, B. A., Jennings, C. E. & Harris, K. L. 2011: Provenance of Des Moines lobe till records ice‐stream catchment evolution during Laurentide deglaciation. Boreas, 10.1111/j.1502‐3885.2011.00208.x. ISSN 0300‐9483. Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till‐sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20 m thick show mixing in their lower 2 to 3 m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice‐stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice‐catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice‐stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited.  相似文献   

4.
Herein we report on the results of an anisotropy of magnetic susceptibility (AMS) fabric case‐study of two Late Weichselian tills exposed in a bedrock quarry in Dalby, Skåne, southern Sweden. The region possesses a complex glacial history, reflecting alternating and interacting advances of the main body of the Scandinavian Ice Sheet (SIS) and its ice lobes from the Baltic basin, perhaps driven by streaming ice. AMS till fabrics are robust indicators of ice‐flow history and till kinematics, and provide a unique tool to investigate till kinematics within and amongst till units. The till section investigated here contains ~8 m of the Dalby Till – a dark grey silt‐clay rich till deposited during one or more Baltic advance – overlain by ~1.5 m of the regional surface diamicton. AMS fabrics within the lower part of the Dalby Till conform to the regional surface fluting, and reflect sustained flow from the ENE with progressive increases in basal strain. A boulder‐rich horizon approximately 3 m from the base of the till marks a restricted excursion in till fabric direction, fabric strength and style of strain. Ice flow is from the SW and W in the upper section. We interpret these fabrics to record shifting ice flow and bed conditions at the margins of the Young Baltic Advance ice lobe in southern Sweden, prior to a short‐lived re‐advance of the main body of the SIS over mainland Sweden recorded by the surface diamicton.  相似文献   

5.
The provenance of the Happisburgh Till and Corton Till of the Corton Formation is investigated using erratic clast lithologies and allochthonous palynomorphs to test whether the long held assumption that they were deposited by ice that originated in Scandinavia is valid. The results show a wide range of lithologies including Carboniferous Limestone and Coal Measures, and Permian Magnesian Limestone that are not found in Scandinavia, and an absence of distinctive Scandinavian material such as rhomb porphyry and larvikite. Lithologies found indicate deposition by an ice sheet which flowed southwards into north-east East Anglia from central and southern Scotland eroding and transporting materials derived from outcrops in these areas and from eastern England and the western margins of the southern North Sea Basin. It is concluded that the long held assumption that the Happisburgh Till and Corton Till of the Corton Formation were deposited by a Scandinavian ice sheet is erroneous and that they were instead deposited by Scottish ice.  相似文献   

6.
The Easington Raised Beach, in Shippersea Bay, County Durham, is the most northerly known interglacial beach deposit in England. It lies directly on Magnesian Limestone bedrock at 33 m O.D. and is covered by glacial sediments attributed to the Devensian. Detailed sedimentological analysis suggests that it is an interglacial beach, which is supported by the presence of pebbles bored by marine organisms and littoral, temperate-climate, marine macro- and micro-fossils. It comprises beds of unconsolidated, bedded, imbricated, well-rounded sands and gravels, overlain by similar, but calcreted, deposits. The gravel fraction is dominated by Magnesian and Carboniferous limestone, with orthoquartzite, flint, and porphyries also present; these are far-travelled erratics that must have derived from the erosion of older glacially transported sediments. Previous workers have described erratics derived from the Oslofjord region of Norway in the raised beach gravel, although rocks diagnostic of a Scandinavian origin have not been recovered as part of this study. The heavy-mineral suite is rich in epidote, dolomite, clinopyroxenes, garnet, tourmaline, and micas. The beach was dated previously by conventional amino acid analysis of the shells, which suggested a Marine Isotope Stage (MIS) 7 age, albeit with a reworked component from MIS 9. This has been confirmed by new optically stimulated luminescence (OSL) dates, which indicate that the beach formed between 240 and 200 ka BP. New amino acid racemisation analyses, using a modified technique, broadly support this interpretation but must await more comparative data before they can be assessed fully. The strong indication of an MIS 7 age for the formation of the beach has implications for the uplift history of northeastern England during the Pleistocene, and indicates an uplift rate of 0.19 mm a−1. The stable isotope geochemistry indicates that the cementation occurred during an interglacial period, whilst U-Series dating of the cement indicates that cementation occurred mostly during the Holocene, and is genetically related to the overlying Devensian till. This work has formed part of a full re-appraisal of the glacial sequence in eastern County Durham, the results of which suggest that the Warren House Formation pre-dates the raised beach, and that the Devensian Horden Till overlies the raised beach.  相似文献   

7.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The morphogenesis of tills below the culmination zones of the Weichsclian inland ice has been studied an an upland area with a relief of 1500 m. The thickness of the tills varies considerably, depending principally on gee-morphology, ice-movement directions, and glaciofluvial drainage during the last deglaciation period. The thickest tills, found in valleys, accumulated in three ways. Glaciofluvial/lacustrine sediments of prcsumed Mid-Weichselian age have been discovered beneath the tills at niorc than 10 localities. The overlying tills are correlated with different phases of ice movement reconstructed on the basis of detailed studies of stt-iae. The till stratigraphy of one locality, Stenseng, is described in detail. Based upon combined analyses of texture, structure, and fabric, four different hasal tills are recognized, each corresponding to a particular ice direction. A characteristic boulder layer represents a change in thc direction of glacial movement. Boulder layers in till are thought to he essential for the development of earth pillars.  相似文献   

9.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

10.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

11.
A section in a gravel quarry at Somersham, Cambridgeshire, has revealed evidence for a lake, named Lake Sparks, in Fenland during the Late Devensian substage of the Pleistocene. Varved sediments were deposited in this lake over a minimum period of ca. 65 yr. The varved clays contain red diamicton clasts, interpreted as dump, delivered to the area by icebergs or floes from the ice-front in the Wash that deposited the Hunstanton Till. The lake is therefore considered a result of impounding by the Late Devensian ice advance on the east coast. A small number of pale varves have a characteristic structure indicating increased calcite deposition in the summer. They are interpreted as a result of cooler summers with reduced gelifluction from the surrounding Jurassic (Ampthill) Clay. Such gelifluction introduced a mudflow into the varved sequence at the southern end of the section. Pollen analysis confirms the derivation of the clays from the surrounding Ampthill Clay. The varved clays are succeeded by fluviatile sediments related to a delta building into the lake from the north. The delta sediments show periodic influx of sand into the lake interrupted by quiet periods with the development of Chara meadows. A thin spread of fluviatile gravels succeed the delta sediments, indicating the development of a braided river plain as the lake drained on the melting of the Late Devensian ice. This was followed by permafrost development, with the formation of thin thermal contraction cracks and coversand deposition. Later, degradation of the permafrost was associated with the formation of diapirs and a solifluction mantle, and incision of the fluviatile and lacustrine sediments took place. Flandrian peat and marl later filled the valley so formed. A radiocarbon date of 18310 yr BP from Salix leaves in a drift mud at the top of channel sands preceding lake sediment, in a neighbouring section, confirms the relation of the lake to the Late Devensian ice advance. The significance of the Late Devensian sediments at Somersham lies in the information they give on the timing and variety of processes related to drainage and ice movement in the period before, during and after the ice advance to the Wash. A period of low deposition rate in the lake was followed by rapid delta sedimentation and lake drainage, with implications for climatic change.  相似文献   

12.
Till stratigraphical investigations in Berlin have been evaluated using the gravel counting method (4–12.5 mm). The results are compared with studies of several authors from the coastal area north of Berlin (Rügen and Stoltera Cliff near Warnemünde); the gravel counting results from Stoltera Cliff (Cepek 1973) are re-evaluated by means of cluster analysis, and a new stratigraphical interpretation of the sequence in the cliff is given. These results, together with a discussion of correlation problems of Weichselian and especially Saalian tills south of the Baltic Sea, lead to the following hypothesis: it is proposed that the ice margin of each glaciation has been nourished by several ice flows coming from different directions, for the most part turning from north-northeast at onset to east-northeast in later phases. Consequently, differences of composition are found in tills of the same age.  相似文献   

13.
Surficial stratigraphic units of Aroostook County, Maine, have been mapped and formal stratigraphic names for these units are proposed. Evidence exists for at least two distinct glacial phases which are represented by three tills. Two of these tills were deposited penecontemporaneously either as the result of coalescing ice sheets or as the result of the thermal regime existing within a single ice sheet. The oldest till is named the St. Francis and is correlated with the Chaudière Till of southeastern Quebec. The other tills are named the Mars Hill and Van Buren tills, respectively, and are correlated with the Lennoxville till of southeastern Quebec. Interbedded stratified sediments associated with the St. Francis till are correlated with the Gayhurst Formation. Stratified sediments associated with Van Buren and Mars Hill tills are correlated with post Lennoxville sediments of Quebec. Granite-gneiss erratics of Canadian Shield provenance in the Van Buren till indicate advance of the Laurentide ice into northern Maine during late Wisconsinan time. Moraines in southern Aroostook County with associated outwash and eskers record general recession from coastal Maine. Recession occurred after the formation of the Pineo Ridge moraine in Maine and the St. Antonin-Highland Front moraine complex in Quebec. The Caribou-Winterville moraine complex in northern Maine marks the boundary between the penecontemporaneously deposited Van Buren and Mars Hill surface tills and is correlated with the Grand Falls moraine at Grand Falls, New Brunswick.  相似文献   

14.
15.
Livingstone, S. J., Ó Cofaigh, C., Evans, D. J. A. & Palmer, A. 2010: Sedimentary evidence for a major glacial oscillation and proglacial lake formation in the Solway Lowlands (Cumbria, UK) during Late Devensian deglaciation. Boreas, Vol. 39, pp. 505–527. 10.1111/j.1502‐3885.2010.00149.x. ISSN 0300‐9483. This paper is a sedimentological investigation of Late Devensian glacial deposits from the Solway Lowlands, northwest England, in the central sector of the last British–Irish Ice Sheet. In this region, laminated glaciolacustrine sediments occur, sandwiched between diamictons interpreted as subglacial tills. At one location the laminated sediments are interpreted as varves, and indicate the former presence of a proglacial lake. Correlation of these varves with other laminated sediments indicates that the glacial lake was at least 140 km2 in area and probably much larger. Extensive beds of sand, silt and gravel throughout the Solway Basin associated with the lake demonstrate ice‐free conditions over a large area. Based on the number of varves, the lake was in existence for at least 261 years. The stratigraphic sequence of varves bracketed by tills implies a major glacial oscillation prior to the Scottish Re‐advance (16.8 cal. ka BP). This oscillation is tentatively correlated with the Gosforth oscillation at c.19.5 cal. ka BP. Subsequent overriding of these glaciolacustrine sediments during a westward‐moving re‐advance demonstrates rapid ice loss and then gain within the Solway Lowlands from ice‐dispersal centres in the Lake District, Pennines and Southern Uplands. It is speculated that the existence of this and other lakes along the northeastern edge of the Irish Sea Basin would have influenced ice‐sheet dynamics.  相似文献   

16.
This is a study of Late Devensian drumlins formed in southern Anglesey and Arvon, northwest Wales. This area was affected by ice sheet coalescence when the Welsh ice sheet met with the lrish Sea ice sheet, and drumlins were formed once the two had coalesced. It is suggested that the drumlins were the result of net subglacial soft-bed erosion, and that they represent more resistant cores within the subglacial deforming layer. The drumlins have either gravel or till cores, and where the core was deformable, large-scale compressive glaciotectonic structures were seen (e.g. Dinas Dinlle) with local subglacial compression of –59%. Where the cores were more resistant (e.g. Lleiniog) these were not deformed but remained as more competent masses within the deforming layer. It is suggested that the less competent material flowed around the cores, some remaining as a thin carapace, but most of the material being removed down glacier, leaving the drumlins as erosional remnants. In northwest Wales there is a multi-till sequence that traditionally has been interpreted as having been deposited as the result of separate ice-sheet advances and retreats. However, in this study, it is suggested that the different tills were deposited as the result of ice-sheet coalescence, and that sites such as Dinas Dinlle do not show evidence of a major readvance in the retreat of the Devensian ice, but are indicative of continuously changing conditions within the subglacial deforming bed.  相似文献   

17.
Pre-Late Devensian organic deposits in the Buchan area of northeast Scotland were investigated for their geomorphological and palaeoecological (pollen, plant macrofossils, coleoptera) properties. Close ecological agreement exists between fossil indicators and allows the inference that the environment in the vicinity of the deposits was a dwarf shrub tundra of the type met today in high latitude areas of Scandinavia and arctic Russia. The latest in a series of radiocarbon dates from the site produced determinations beyond the limits of the method, although the geomorphological and fossil evidence appears to point to an interstadial date within Oxygen Isotope Stages 5a or 5c. The site has special significance for arguments concerning the much-debated concept of ‘Moraineless Buchan’; indeed, evidence is presented which supports the concept of extensive ice sheet glaciation during the Late Devensian for this crucial geographical area. If Buchan is to be seen as a further casualty amongst other disputed ice-free enclaves, then a return to earlier models of extensive ice sheet glaciation in the Late Devensian of Scotland would seem to be necessary. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

19.
The most complete terrestrial sequence of Anglian (Elsterian) glacial sediments in western Europe was investigated in northeast Norfolk, England in order to reconstruct the evolution of the contemporary palaeoenvironments. Lithostratigraphically the glacial sediments in the northeast Norfolk coastal cliffs can be divided into the Northn Sea Drift and Lowestoft Till Formations. Three of the diamicton members of the North Sea Drift Formation (Happisburgh, Walcott and Cromer Diamictons) were deposited as lodgement and/or subglacial deformation till by grounded ice, but one, the Mundesley Diamicton, is waterlain and was deposited in an extensive glacial lake. Sands and fine sediments interbedded between the diamictons represent deltaic sands and glaciolacustrine sediments derived not solely from the melting ice in the north but also from extra-marginal rivers in the south. The Lowestoft Till Formation is not well preserved in the cliffs but includes lodgement till (Marly Drift till) and, most probably, associated meltwater deposits. Extensive glaciotectonism in the northern part of the area is shown to relate to oscillating ice that deposited the Cromer Diamicton and also partially to the ice sheet that deposited the Marly Drift till. It is suggested that during the Anglian Stage the present day northeast Norfolk coast was situated on the northwestern margin of an extensive glaciolacustrine basin. This basin was dammed by the Scandinavian ice sheet in the north and northeast. Because the grounding line of this ice sheet oscillated in space and time, part of the North Sea Drift diamictons were deposited directly by this ice. However, during ice retreat phases glaciolacustrine deposition comprised waterlain diamicton, sands and fines. When the Scandinavian ice sheet was situated in northernmost Norfolk, the British ice sheet (responsible for depositing the Marly Drift facies) entered the area from the west. This ice sheet partially deformed the North Sea Drift Formation sediments in the northern part of the area but not in the south, where the British ice sheet apparently terminated in water. The interplay of these two ice sheets on the northern and western margins of the glacial lake is thought to be the major determining factor for the accumulation of thick glacial deposits in this area during the Anglian glaciation.  相似文献   

20.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号