首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
天体自转因素导致的相对论性效应   总被引:1,自引:0,他引:1  
本文在PPN框架中得到了太用系内自转因素产生的瞬时轨道根数改正的一阶封闭分析解.轨道半长径和偏心率不受长期效应的影响,只受周期效应的影响;轨道倾角、升交点经度、近星点角距,平近点角既受长期效应又受周期效应的影响.我们用两种引力理论分别计算了太阳自转对地内大行星及—些小行星轨道,行星自转对自然卫星轨道,地球自转对人造卫星轨道所产生的各相对论性效应.  相似文献   

2.
轨道偏心率的变化极其重要,它是制约各类(不同高度)空间飞行体轨道寿命的关键因素之一.对于地球低轨卫星,主要受大气耗散作用的影响,而对环月(或环火星)低轨卫星,主要受非球形引力位中奇次带谐项的影响,会出现变幅较大的长周期变化,从而导致近星点高度hp在一段时间内有明显的下降趋势.对大偏心率轨道和高轨道,第三体的引力作用也会使e出现变幅较大的长周期变化,近星点高度hp也会有明显下降的现象,这都会影响卫星的轨道寿命,但这一动力学机制与大气耗散机制和非球形引力机制都不相同.即对轨道偏心率的变化特征及其对轨道寿命的影响作一综述.  相似文献   

3.
研究了双星多方模型的形状对同步子星轨道要素的摄动影响,假定两子星在同一轨道面上运动,推出了主星对伴星的轨道要素的摄动量,理论结果表明,双星多方模型对轨道半长轴和偏心率只有周期项摄动,无长期摄动,但对近星点和历元平近点角除有周期摄动外还有长期摄动效应。文中将理论结果应用于同步双星βPer(大陵五双星)的计算上,除计算了两个子星的形状(椭率)外对同步子星的轨道要素变化的周期项振幅和长期项的效应做了数值  相似文献   

4.
王龙  周洪楠 《天文学报》2002,43(3):302-326
选用银河系中29个累积光谱型为F型的球状星团样本。根据它们的视向速度,绝对自行等参数,归算处理后得出了各样本星团的空间分布和运动速度。并以此作为初始条件,在给定的3种银河系引力势模型中,采用数值积分方法计算出各样本星团的运动轨道。计算结果表明:(1)大部分样本星团都位于银心距5kpc-10kpc的范围内,相对于银心呈球对称分布,它们的速度也呈椭球分布;(2)29个样本星团按其金属度大小和基本性发类,可分属HB和MP两个次系,且样本星团数随金属度[Fe/H]而变化,在[Fe/H]=-1.6处出现一个峰值;(3)所有样本星团的轨道运动都呈周期性,大都在一个有界而不封闭的周期轨道上运动,其最大银心距大都在40kpc以内。不同的引力势模型对球状星团轨道的具体形态影响不大,在给定的引力势模型下,当某些星团的运动轨道穿越距银心1kpc附近的区域时会出现“混沌”行为。而样本星团的金属度与其轨道形态之间的相关性并不明显;(4)29个样本星团的轨道半长轴、远银心距和方位周期随金属度的变化规律基本相似。轨道偏心率与金属度有关,对于所选的晕族样本星团而言,大约有24%的样本星团的轨道偏心率低于0.4,不同的引力势模型对近银心距、偏心率和参数的不确定度等量影响较小,但是对远银心距、径向周期和方位周期等参数影响较为明显。  相似文献   

5.
研究了双星多方模型的形状对同步子星轨道要素的摄动影响。假定两子星在同一轨道面上运动,推出了主星对伴星的轨道要素的摄动量。理论结果表明:双星多方模型对轨道半长轴和偏心率只有周期项摄动,无长期摄动,但对近星点和历元平近点角除有周期摄动外还有长期摄动效应。文中将理论结果应用于同步双星βPer(大陵五双星)的计算上。除计算了两个子星的形状(椭率)外对同步子星的轨道要素变化的周期项振幅和长期项的效应做了数值计算  相似文献   

6.
Kepler空间计划发现了大量半径小于4 R_⊕(R_⊕为地球半径)的近轨道行星,成为Kepler探测的特色之一,它们对当前的行星形成模型提出了新的挑战.行星与其中心恒星之间的潮汐效应对重塑这类行星的轨道构型具有重要影响.基于各种初始的轨道分布数值模拟了近轨道、低质量行星的潮汐演化,定性地给出了行星最后的轨道分布特征,轨道半长轴和峰值均随着初始的半长轴和偏心率增大而变大.对于初始的平均半长轴在0.1au以内,平均偏心率大于0.25时,数值模拟结果与观测比较接近.潮汐耗散系数、恒星和行星的质量等相关参数对潮汐演化后的半长轴分布影响都比较小.基于数值模拟结果,尝试了揭示低质量行星的形成机制:它们很可能形成于原行星盘的较远处,具有中等的轨道偏心率,后来在原行星盘中经历了Ⅰ类迁移到达目前的轨道,但是这不能排除行星的当地形成机制.  相似文献   

7.
钡星系统轨道根数分布及丰度的Monte-Carlo模拟计算   总被引:3,自引:0,他引:3  
采用星风质量吸积的角动量守恒模型,用Monte—Carlo方法研究了普通红巨星双星系统和钡星的轨道根数的变化规律,由于钡星系统是由普通红巨星双星系统演化而来,因此钡星系统的轨道偏心率及周期的分布显示了经过质量吸积后双星系统的最终轨道特征。计算结果表明,随着星风吸积过程的进行,在星风质量损失阶段系统轨道半长轴将增大,导致轨道周期增大,而偏心率变化不大,由此可以解释普通红巨星双星系统和钡星系统的轨道根数的分布规律和变化情况以及钡星重元素丰度分布特征。  相似文献   

8.
太阳质量损失对高阶行星轨道的长期影响   总被引:1,自引:0,他引:1  
在文[1]研究的基础上给出了太阳质量损失对三阶行星轨道的影响解,并计算了二、三阶解的长期效应的数值结果。理论结果表明,在三阶解中对于质量变化模型κ=3的情形,太阳质量损失对轨道半长轴继续产生长期项、混合项和周期项,但对轨道偏心率和近点角距只产生周期项,三阶解的效应值虽小,但有定性意义。  相似文献   

9.
外赋AGB星星风吸积的角动量守恒模型   总被引:5,自引:0,他引:5  
张波  彭秋和 《天文学报》1998,39(4):424-429
用整个系统的角动量守恒条件代替切向动量守恒条件,推导出星风质量吸积及轨道参量变化方程.在新的轨道参量变化方程的基础上,计算了外赋AGB星系统的星风质量吸积及轨道参量的变化.将星风吸积模型同内禀AGB星核合成模型结合起来,通过逐次脉冲吸积质量和混合,自洽地计算外赋AGB星的重元素超丰,并给出计算结果与观测值的比较.对初始质量较大的Ba星(M2.0=2.5M⊙),当系统轨道周期大于1300天时,属于星风吸积,小于600天成为共同包层双星或灾变双星.对初始质量较小的Ba星(M2.0=13M⊙),当系统轨道周期大于1600天时,属于星风吸积,小于600天时成为灾变双星,由此可以解释Ba星的重元素超丰和轨道参量的观测事实,并有利于解释观测到的外赋S星轨道周期的600天下限.随着星风吸积过程的进行,轨道偏心率逐渐增大,这对解释Ba星轨道偏心率平均值大于外赋S星和CH星平均值的观测事实有利.  相似文献   

10.
地球磁场对带电人造卫星轨道根数的摄动影响   总被引:2,自引:0,他引:2  
研究了地球磁场对带电的非赤道卫星的轨道根数的摄动影响,理论结果表明,地球磁场对带电卫星的轨道半长轴没有摄动影响,既无周期摄动,也无长期摄动,但对轨道偏心率、轨道倾角、升交点赤经、近地点经度和历元平近点角均有周期摄动,且对升交点和近地点经度还有长期摄动效应,通过算例表明,当卫星带有大量电菏时,地球磁场对卫星轨道的摄动影响必须加以考虑。  相似文献   

11.
高布锡 《天文学报》2005,46(3):322-330
月日潮汐摩擦和地球惯量矩变化是日长长期变化的主要原因.在本文中,利用最新的地球物理和古生物钟数据,对过去15亿年以来的月日潮汐摩擦、地球惯量矩变化和日长长期变化等作了数值对比研究.由此得到二个重要结论:一是仅利用地球的自转形变不能解释J2的变化,这说明地球的重力分异现象至今仍存在着;其二是在几亿年前的潮汐摩擦比现在大得多,若取潮汐耗散与距离的立方成反比时,理论结果与由古生物钟得到的回归年日数和朔望月日数数据较为符合。  相似文献   

12.
M. Noland  J. Veverka 《Icarus》1976,28(3):401-403
Using Mariner 9 results on the shapes, rotation periods and photometric functions of Phobos and Deimos we calculate approximate orbital lightcurves for the two Martian satellites. The prediction is that both Phobos and Deimos should show orbital brightness fluctuations detectable from Earth. For Phobos the detectable amplitude is predicted to be about 0.1 mag; for Deimos, 0.2 mag.  相似文献   

13.
We report the results of an analysis of the variation of the proper rotation of several destabilized satellites over many-year long time intervals. The cause of the cyclic variations of the proper rotation period of “Midas-7” satellite, which has been orbiting the Earth since 1963 at an altitude of 3700 km, have long been unclear. These variations could not be explained either by the influence of the terrestrial atmosphere and terrestrial magnetic field, or by solar activity. Based on the results of 40-year long observations of “Midas-4,” “Midas-6,”, and “Midas-7” satellites it was established that their proper rotation exhibits not only dissipative braking variations, but also long-period variations with the periods of 477 days (“Midas-4”), 466 days (“Midas-6”), and 346 days (“Midas-7”) with different amplitudes. These variations in the case of the above satellites have well-defined resonance nature. An explanation of the processes found is proposed based on the results of this study and simulations of the observed orbital dynamics of the satellites. Long-period variations of the proper spacecraft rotation arise as a result of the combined effect of the gravitational fields of the Earth, Moon, and Sun depending on the orientation of their orbital planes in space. The amplitudes of such variations is determined by the inclination of satellite orbits to the equator: the closer it is to the pole (i.e., to 90?), the stronger the effect.  相似文献   

14.
Abstract— We give a nonmathematical review of recent work regarding the Yarkovsky effect on asteroidal fragments. This effect may play a critical, but underappreciated, role in delivering meteorites to Earth. Two variants of the effect cause drifts in orbital elements, notably semimajor axes. The “classic” or “diurnal” Yarkovsky effect is associated with diurnal rotation at low obliquity. More recently, a “seasonal” effect has also been described, associated with high obliquity. Studies of these Yarkovsky effects are combined with studies of resonance effects to clarify meteorite delivery. If there were no Yarkovsky drift, asteroid fragments could reach a resonance only if produced very near that resonance. However, objects in resonances typically reach Earth-crossing orbits within a few million years, which is inconsistent with stone meteorites' cosmic-ray exposure (CRE) ages (5–50 Ma) and iron meteorites' CRE ages (100–1000 Ma). In the new view, on the other hand, large objects in the asteroid belt are “fixed” in semimajor axis, but bodies up to 100 m in diameter are in a constant state of mixing and flow, especially if the thermal conductivity of their surface layers is low. Thus, small asteroid fragments may reach the resonances after long periods of drift in the main belt. Yarkovsky drift effects, combined with resonance effects, appear to explain many meteorite properties, including: (1) the long CRE ages of iron meteorites (due to extensive drift lifetimes in the belt); (2) iron meteorites' sampling of numerous parent bodies; (3) the shorter CRE ages of most stone meteorites (due to faster drift, coupled with weaker strength and more rapid collisional erosion); and (4) the abundance of falls from discrete impact events near resonances, such as the 8 Ma CRE age of H chondrites. Other consequences include: the delivery of meteorite parent bodies to resonances is enhanced; proportions of stone and iron meteorites delivered to Earth may be different from the proportions at the same sizes left in the belt, which in turn may differ from the ratio produced in asteroidal collisions; Rabinowitz's 10–100 m objects may be preferentially delivered to near-Earth space; and the delivery of C-class fragments from the outer belt may be inhibited, compared to classes in other parts of the belt. Thus, Yarkovsky effects may have important consequences in meteoritics and asteroid science.  相似文献   

15.
Direct solar radiation pressure and Earth’s shadow crossings are known to be responsible for short-term variations of space debris orbital elements, the higher the area-to-mass ratio the larger the perturbation. Nevertheless, existing studies have always been performed on periods of time shorter than 150 years. Considering longer time scales of the order of a 1000 years, this paper focuses on the long-term periodic evolution of space debris trajectories caused by successive Earth’s shadow crossings. Other perturbations as the geopotential and third-body gravitational attractions obviously play a role and compete with the one which is described in this paper. Symplectic numerical propagations and new (semi-)analytical models are developed to identify a frequency associated to shadow entry and exit eccentric anomalies. It is shown that Earth’s shadow is responsible for large deviations from the initial orbital elements, even on shorter period of times, and that this effect increases along with the area-to-mass ratio.  相似文献   

16.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

17.
Natural transfer of viable microbes in space.   总被引:8,自引:0,他引:8  
The possibility and probability of natural transfer of viable microbes from Mars to Earth and Earth to Mars traveling in meteoroids during the first 0.5 Ga and the following 4 Ga are investigated, including: --radiation protection against the galactic cosmic ray nuclei and the solar rays, dose rates as a function of the meteorite's radial column mass (radius x density), combined with dose rates generated by natural radioactivity within the meteorite; and survival curves for some bacterial species using NASA's HZETRN transport code --other factors affecting microbe survival: vacuum; central meteorite temperatures at launch, orbiting, and arrival; pressure and acceleration at launch; spontaneous DNA decay; metal ion migration --mean sizes and numbers of unshocked meteorites ejected and percentage falling on Earth, using current semiempirical results --viable flight times for the microbe species Bacillus subtilis and Deinococcus radiodurans R1 --the approximate fraction of microbes (with properties like the two species studied) viably arriving on Earth out of those ejected from Mars during the period 4 Ga BP to the present time, and during the 700 Ma from 4.5 to 3.8 Ga. Similarly, from Earth to Mars. The conclusion is that if microbes existed or exist on Mars, viable transfer to Earth is not only possible but also highly probable, due to microbes' impressive resistance to the dangers of space transfer and to the dense traffic of billions of martian meteorites which have fallen on Earth since the dawn of our planetary system. Earth-to-Mars transfer is also possible but at a much lower frequency.  相似文献   

18.
A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (<0.1 M) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 M can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar population critically depend on the thermal bloating of the semi-degenerate hydrogen mass losing component, with longer orbital periods for a greater degree of bloating. Provided that the radius of the companion is increased by about a factor of 2 relative to a fully degenerate, zero temperature configuration, an approximate agreement between observed long orbital periods and theoretical modeling of hydrogen rich donors can be achieved. We find no discrepancy between the estimated birth rates for LMXBs and black widow systems, which on average are ${\sim}1.3\times10^{-5}~{\rm yr}^{-1}$ and $1.3\times10^{-7}~{\rm yr}^{-1}$ respectively.  相似文献   

19.
While trajectory design for single satellite Earth observation missions is usually performed by means of analytical and relatively simple models of orbital dynamics including the main perturbations for the considered cases, most literature on formation flying dynamics is devoted to control issues rather than mission design. This work aims at bridging the gap between mission requirements and relative dynamics in multi-platform missions by means of an analytical model that describes relative motion for satellites moving on near circular low Earth orbits. The development is based on the orbital parameters approach and both the cases of close and large formations are taken into account. Secular Earth oblateness effects are included in the derivation. Modeling accuracy, when compared to a nonlinear model with two body and J2 forces, is shown to be of the order of 0.1% of relative coordinates for timescales of hundreds of orbits. An example of formation design is briefly described shaping a two-satellite formation on the basis of geometric requirements for synthetic aperture radar interferometry.  相似文献   

20.
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3–20 keV energy range were fitted ∼6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at ∼6.4 keV in the restricted energy range of 0.3–10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号