首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
水平地震作用下无锚固储罐应力与应变响应分析   总被引:1,自引:0,他引:1  
在考虑地基与储罐相互作用的情况下,采用有限元法对储罐在水平地震荷载作用下的应力及应变反应进行了数值计算。对3×104m3和2×103m3罐壁应力及应变的分析结果表明:环向、轴向应力及应变的分布形式呈现出明显的下部大上部小的特点,在偏底部的位置出现应力和应变的峰值;储液罐在水平地震作用下“象足”变形是由纵向压应力达到屈曲临界应力导致的屈曲破坏,不是强度破坏,即破坏属于失稳破坏而非强度破坏。  相似文献   

2.
大型储罐抗震能力可靠度评估   总被引:3,自引:0,他引:3  
本文对大型圆筒形立式储液罐抗震能力可靠性分析中涉及的、随机性影响较大的各变量进行了分析,建立了各随机变量的概率模型。针对大型储罐的震害特点,从3个方面建立了大型储罐抗震能力可靠性分析的极限状态方程,提出了总体可靠性评估办法。通过1个具体的油罐分析表明,本文建立的可靠性概率分析模型能够给出较好的抗震能力评估结果。  相似文献   

3.
地震作用下立式储液罐罐壁"象足"变形仿真分析   总被引:2,自引:0,他引:2  
基于ANSYS软件建立了考虑液体晃动和罐底提离立式储液罐有限元模型,分别进行了水平地震和竖向地震作用下罐壁"象足"变形分析.分析表明:立式储液罐罐壁"象足"变形主要是由罐壁纵向压应力超过临界应力而产生的局部屈曲破坏,并非强度破坏.因罐底提离导致的罐底与基础反复撞击加大了作用在罐壁上的应力,使罐壁底部"象足"变形不断发展,最终导致罐壁撕裂.在完全相同地震加速度作用下,水平地震作用比竖向地震作用罐壁更早更容易进入屈曲状态,产生"象足"变形.  相似文献   

4.
地震作用下立式储液罐罐壁“象足”变形仿真分析   总被引:1,自引:0,他引:1  
基于ANSYS软件建立了考虑液体晃动和罐底提离立式储液罐有限元模型,分别进行了水平地震和竖向地震作用下罐壁“象足”变形分析。分析表明:立式储液罐罐壁“象足”变形主要是由罐壁纵向压应力超过临界应力而产生的局部屈曲破坏,并非强度破坏。因罐底提离导致的罐底与基础反复撞击加大了作用在罐壁上的应力,使罐壁底部“象足”变形不断发展,最终导致罐壁撕裂。在完全相同地震加速度作用下,水平地震作用比竖向地震作用罐壁更早更容易进入屈曲状态,产生“象足”变形。  相似文献   

5.
位移谐波激励下拱顶锚固储罐的动力屈曲研究   总被引:1,自引:1,他引:0  
地震下储罐罐壁发生屈曲是其主要的震害形式,研究储罐的动力屈曲特性尤为重要.以位移简谐波为水平激励,运用ADINA有限元软件对高径比分别为0.82、1.24和1.85的3种拱顶锚固储罐进行动力屈曲分析.根据Budiansky-Roth动力屈曲准则,通过谐波位移幅值对应的加速度峰值PGA和储罐位移响应,绘制特征节点的"伪平衡路径"轨迹,以确定临界加速度峰值,判断储罐动力屈曲.3种储罐模型在位移谐波激励下均为弹性屈曲.通过动力屈曲分析得出结论:储罐屈服的位置随高径比的不同有所不同,屈服多发生在径向变形最大处,罐壁内外面的塑性总应变值和屈服应力值大小不同等.最后以储罐模型B为例,将以"伪平衡路径"轨迹确定的临界应力与规范公式的计算结果进行了比较.  相似文献   

6.
为考虑土与结构相互作用(SSI)对15×104m3大型立式储罐基础隔震效应的影响,采用弹簧-阻尼系统模拟地基土和隔震层,罐壁及底板采用壳单元,流体采用势流体单元,利用ADINA建立15×104m3储罐有限元模型,在峰值加速度0.2g El Centro波地震激励下,应用Newmark数值积分方法进行地震响应分析,结果表明:考虑SSI效应时,非隔震储罐的地震响应有所减小,而基础隔震时地震响应有放大效应。储罐抗震减震设计时,中软地基土上储罐从结构设计安全角度来说需要考虑土与结构的相互作用。  相似文献   

7.
位移谐波激励下拱顶锚固储罐的动力响应分析   总被引:1,自引:1,他引:0  
地震中拱顶锚固储罐的破坏将造成严重的后果,研究其地震作用下的动力响应特性具有一定工程意义。以位移简谐波为水平激励,运用AD INA有限元软件对一座3 000m3的拱顶锚固储罐模型进行动力数值模拟,系统分析了储罐内液面晃动波高、动水压力极值、罐壁应力、拱顶应力、拱顶位移等动力响应结果,将以位移谐波激励和以加速度谐波激励的储罐动力响应结果进行比较。分析表明,位移谐波激励下拱顶锚固储罐的液面晃动波高受场地影响较大;储罐应力分布具有一定规律性;采用位移谐波激励时其应力、位移和动水压力等较采用加速度谐波激励时大,液体晃动波高较小。  相似文献   

8.
巴颜喀拉块体活动导致的昆仑—汶川地震系列,是目前中国大陆唯一一组7级以上地震序列,未来几年该块体仍是发生7级地震的主体地区。巴颜喀拉块体东缘从走滑运动向逆冲运动转换的构造动力学性质使得活动块体两个相邻边界带存在大地震序列的关联性。研究表明近期逐渐加速的块体东边界强震序列是北边界强震活动的响应,巴颜喀拉块体南边界的鲜水河断裂带同样以左旋走滑的方式向东边界挤压,但巴颜喀拉块体东南缘地震呈现以下两个特点,一是强震大都发生在巴颜喀拉块体东边界断裂带,东边界强震序列呈现加速状态;二是南边界鲜水河断裂带在1973年炉霍7.6级地震后,已有40多年没有发生7级以上地震,鲜有6.5级以上强震,在此次地震序列中表现出一种大震缺失的状态。因此,巴颜喀拉块体东南缘主要断裂带的地震危险性值得关注和研究。同震库仑破裂应力及震后粘弹性松弛在解释余震序列分布,分析强震序列相互作用关系及未来地震危险性分析等方面发挥了重要的作用。比如汶川地震之后,一些研究者利用弹性位错模型计算了汶川地震的同震库仑破裂应力变化,并对龙门山区域未来的地震危险性进行了估计。一些研究者分别计算了汶川地震和芦山地震后周边断层的同震库仑应力变化,以及汶川地震和芦山地震引起的同震和震后粘弹性松弛应力场变化,得到了汶川地震可能有效地促进了芦山地震的发生的结论。在应力演化过程中,震间构造应力加载对强震危险性的作用也非常重要,目前比较流行的计算这部分应力积累的做法是采用"负位错"的理论进行计算,这一方法虽然简洁,但假设了断层是完全闭锁的,可能会造成一定误差。本文拟以巴颜喀拉块体区域构造活动作为三维有限元模型的边界约束,综合研究区域介质速度、密度结构最新反演结果计算介质的弹性材料参数,从初始应力场出发模拟在构造应力和重力作用下的现今背景应力场,计算强震序列引起的区域内断裂带震前、震间、震后的应力演化,获得更为准确可靠的应力场结果。利用速率-状态关系计算库仑应力变化对研究区域背景地震发生率的影响,利用泊松概率过程计算研究区域在汶川地震和芦山地震震后未来10年6级以上强震的发震概率及研究区域主要断裂带的6级以上强震发震概率。除以上述准动力学的方法研究巴颜喀拉块体东南缘应力演化及地震危险性,本文还以鲁甸地震为例,研究鲁甸地震从成核区开始破裂,然后扩展直至终止的自发破裂动力学过程,探索影响地震自发破裂位错的主要因素。研究内容:(1)建立巴颜喀拉块体东南缘三维粘弹性有限元模型。(2)模拟巴颜喀拉块体东南缘主要断裂带上1900年以来7级以上强震序列的应力演化过程,并对强震序列对芦山地震的触发作用进行了研究,对比库仑应力场及等效应力场演化结果与背景地震活动的关系。(3)应用速率-状态关系研究库仑破裂应力对汶川地震、芦山地震震后研究区域的地震发生率的影响,应用泊松过程给出研究区域主要断层未来的强震发生概率。(4)应用可以描述断层摩擦机制的FAULTS有限元软件对芦山地震断层错动方式,初始破裂点进行了模拟,研究了汶川地震后,断层强度的变化对芦山地震的影响。(5)应用曲线有限差分方法建立鲁甸地震非平面断层自发破裂模型,模拟鲁甸地震在包谷垴—小河断裂上的自发破裂过程,分析影响鲁甸地震自发破裂过程的主要因素。本文的创新点:(1)以三维速度、密度反演结果建立能反映更真实地下介质的三维粘弹性有限元模型;(2)从初始应力场出发,进行数十万年的应力场演化模拟直至获得与现今构造应力场更为吻合的背景应力场用于地震序列模拟;(3)采用泊松概率模型计算地震发生概率时直接基于三维粘弹性有限元模型得到的库仑应力结果,充分考虑了同震、震间和震后效应的影响。同时,在考虑背景地震发生率时采用了更全面完整的地震目录,这可能使得对未来地震危险性的估计更准;(4)对鲁甸地震自发破裂过程进行了动力学模拟,将震间应力积累过程与同震地震破裂过程的模拟结合起来。  相似文献   

9.
Conical steel shells are widely used as water containments for elevated tanks. However, the current codes for design of water structures do not specify any procedure for handling the seismic design of such structures. In this paper, a numerical model is developed for studying the stability of liquid-filled conical tanks subjected to seismic loading. The model involves a previously formulated consistent shell element with geometric and material non-linearities included. A boundary element formulation is derived to obtain the hydrodynamic pressure resulting from both the horizontal and the vertical components of seismic motion acting on a conical tank which is prevented from rocking. The boundary element formulation leads to a fluid added-mass matrix which is incorporated with the shell element formulation to perform non-linear dynamic stability analysis of such tanks subjected to both horizontal and vertical components of ground motion. Although, the formulation was developed for conical vessels, it is general and can be easily modified to study the stability of any liquid-filled shell of revolution subjected to seismic loading. The accuracy of fluid added-mass formulation was verified by performing the free vibration analysis of liquid-filled cylindrical tanks and comparing the results to those available in the literature. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Current methods for calculation of long-term probabilities for the recurrence of large earthquakes on specific fault segments are based upon models of the faulting process that implicitly assume constant stress rates during the interval separating earthquakes and instantaneous failure at a critical stress threshold. However, observations indicate that the process of stress recovery following an earthquake involves rate variations at all time scales in addition to stress steps caused by nearby earthquakes. Additionally, the existence of foreshocks, aftershocks and possible precursory processes suggest that there may be significant time dependence of the earthquake nucleation process. A method for determining the conditional probabilities for earthquake occurrence under conditions of irregular stressing is developed that could be useful at all time scales including those pertinent to short-and intermediate-term prediction. Used with models for earthquake occurrence at a stress threshold, the addition of variable stressing introduces a simple scaling of the conditional probabilities by stress level and stress rate. A model for the time-dependent nucleation of earthquake slip has been proposed recently that is based upon laboratory observations of fault strength. This failure criterion results in large but relatively short duration changes in the probability of earthquake recurrence particularly following stress steps. Applied to populations of earthquakes the models predicts a 1/t decay of seismicity following stress steps as observed for aftershocks and for frequency of foreshock-mainshock pairs. The model suggests that variations of seismicity rates of small earthquakes in the nucleation zone of the expected earthquake directly indicate variations in probability of recurrence of the large earthquake.  相似文献   

11.
现役古建木结构普遍存在残损现象,这将影响结构的抗震性能。本文以北京故宫的咸福宫西配殿为研究对象,通过简化其屋顶、斗拱、榫卯和柱脚节点建立结构的理想模型,并在此基础上考虑材料老化和节点性能降低等因素建立其残损现状模型。通过地震易损性分析,得到古建木结构的地震易损性曲线并进行理想和残损结构的震害等级及其发生概率对比。研究结果表明:残损现象降低了咸福宫西配殿的刚度和自振频率;相比于理想结构,咸福宫西配殿残损结构在小震作用下发生轻微损坏的概率增大21.1%,在中震作用下发生中等破坏的概率增大3.7%,大震作用下发生严重破坏的概率增大10.6%;咸福宫西配殿在大震作用下发生倒塌的概率很小,体现了木结构具有良好的抗震性能。  相似文献   

12.
The magnitude M = 6-5 Coalinga earthquake of 2 May 1983 caused intense ground shaking throughout the epicentral region. Unanchored cylindrical ground supported tanks located at six sites within this oil producing area were damaged; damages included elephant's foot buckling at the base of three moderate sized tanks, joint rupture and top shell buckling in one large old rivetted tank, bottom plate rupture of a relatively new welded tank and damage to the floating roofs of 11 tanks. Also oil spilled over the top of many tanks and secondary damages occurred in pipe connections, ladders, etc. In this paper an estimate is made of the intensity of ground motion at each of the tank sites, based on strong motion records made during the main shock and the strongest aftershock. Then response parameters specified by current codes are correlated with the damages observed at each tank site. Based on this comparison, it is concluded that current U.S. practice under-estimates the sloshing response of tanks with floating roofs and does not adequately address the uplifting mechanism of unanchored ground supported tanks.  相似文献   

13.
Previous theoretical studies have shown that tank uplift, that is, separation of the tank base from the foundation, generally reduces the base shear and the base moment. However, there is a paucity of experimental investigations concerning the effect of uplift on the tank wall stresses, which is the principal parameter that controls the seismic design of liquid‐storage tanks. This paper reports a series of shake table experiments on a polyvinyl chloride model tank containing water. A comparison of the seismic behaviour of the tank with and without anchorage is described. Stochastically generated ground motions, based on a Japanese design spectrum, and three tank aspect ratios (liquid‐height/radius) are considered. Measurements were made of the stresses at the outer shell of the tank, the tank wall acceleration and the horizontal displacement at the top of the tank. While the top displacement and the tank shell acceleration increased when uplift was allowed, axial compressive stresses decreased by between 35% and 64% with tank uplift. The effect of uplift on the hoop stresses was variable depending on the aspect ratio. A comparison of experimental values with a numerical model is provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

This paper is concerned with the dielectrophoretic instability of a spherical shell of fluid. A dielectric fluid, contained in a spherical shell, with rigid boundaries is subjected to a simultaneous radial temperature gradient and radial a.c. electric field. Through the dependence of the dielectric constant on temperature, the fluid experiences a body force somewhat analogous to that of gravity acting on a fluid with density variations. Linear perturbation theory and the assumption of exchange of stabilities lead to an eighth order differential equation in radial dependence of the perturbation temperature. The solution to this equation, satisfying appropriate boundary conditions, yields a critical value of the electrical Rayleigh number and corresponding critical wave number at which convective motion begins. The dependence of each critical number is presented as a function of the gap size and temperature gradient. In the limit of zero shell thickness both the critical Rayleigh number and critical wave number agree with results for the case in the infinite plane problem.  相似文献   

15.
The paper presents a hysteretic damage model for the response simulation of structural components with strength and stiffness deterioration under cyclic loading. The model is based on 1D continuum damage mechanics and relates any 2 work‐conjugate response variables such as force‐displacement, moment‐rotation, or stress‐strain. The strength and stiffness deterioration is described by a continuous damage variable. The formulation uses a criterion based on the hysteretic energy and the maximum or minimum deformation for damage initiation with a cumulative probability distribution function for the damage evolution. A series of structural component response simulations showcase the ability of the model to describe different types of hysteretic behavior. The relation of the model's damage variable to the Park‐Ang damage index is also discussed. Because of its consistent and numerically robust formulation, the model is suitable for the large‐scale seismic response simulation of structural systems with strength and stiffness deterioration.  相似文献   

16.
This paper presents a method for evaluating the residual structural capacity of earthquake‐affected steel structures. The method first quantifies the damage severity of a beam by computing the dynamic‐strain‐based damage index. Next, the model used to analyze the structure is updated based on the damage index, to reflect the observed damage conditions. The residual structural capacity is then estimated in terms of changes in stiffness and strength, which can be applied by structural engineers, via a nonlinear static analysis of the updated model. The main contributions of this paper are in performance evaluation of the dynamic‐strain‐based damage index for seismically induced damage using a newly developed substructure testing environment, consideration of various damage patterns in composite beams, and extension of a local damage evaluation technique to a residual capacity estimation procedure by incorporating the model‐updating technique. In laboratory testing, the specimens were damaged quasi‐statically, and vibration tests were conducted as the damage proceeded. First, a bare steel beam–column connection was tested, and then a similar one with a floor slab was used for a more realistic case. The estimated residual structural capacities for these specimens were compared with the static test results. The results verified that the proposed method can provide fine estimates of the stiffness and strength deteriorations within 10% for the specimen without the floor slab and within 30% for that with the floor slab. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   

18.
Operative seismic aftershock risk forecasting can be particularly useful for rapid decision‐making in the presence of an ongoing sequence. In such a context, limit state first‐excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance‐based framework for adaptive aftershock risk assessment in the immediate post‐mainshock environment. A time‐dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event‐dependent fragility curves as a function of the first‐mode spectral acceleration for a prescribed limit state is calculated by employing back‐to‐back nonlinear dynamic analyses. An epidemic‐type aftershock sequence model is employed for estimating the spatio‐temporal evolution of aftershocks. The event‐dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic‐type aftershock sequence aftershock hazard. The daily probability of limit state first‐excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the number of aftershocks. As a numerical example, daily aftershock risk is calculated for the L'Aquila 2009 aftershock sequence (central Italy). A representative three‐story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first‐excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号