首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Did the Altyn Tagh fault extend beyond the Tibetan Plateau?   总被引:2,自引:0,他引:2  
The pre-Miocene northeastern termination of Altyn Tagh fault is a critical outstanding problem for understanding the mechanics of Cenozoic deformation resultant from the Indo-Asian collision and mechanisms of Tibetan Plateau formation. Structures beyond the widely accepted NE end of the Altyn Tagh fault, near the town of Yumen, are needed in order to accommodate strike-slip deformation related to plate-like lateral extrusion tectonics, but structures with the necessary slip magnitudes and histories have not been identified. We report on a series of newly recognized and documented E to ENE-striking faults within the Alxa block, NE of the Tibetan Plateau, that are visible on remotely sensed images and confirmed by field studies. These structures are demonstrably left-lateral faults based on offset geology and kinematic indicators such as striae and s-c fabrics in fault gouge. The faults have post-Cretaceous offsets of at least tens to possibly > 150 km, but limited post-Miocene displacement, constrained by offset sedimentary basins. These characteristics suggest that strike-slip faults of the Alxa region have a similar structural history as the central-eastern Altyn Tagh fault and can provide a mechanism for accommodating Oligocene-Early Miocene extrusion along the Altyn Tagh fault.  相似文献   

2.
The giant sinistral Altyn Tagh Fault(ATF)is the northern boundary of the Tibetan Plateau. It has been playing important role in adjusting the India-Eurasia collision and the tectonic evolution of the northeastern Tibetan Plateau. Knowledge of the evolution of the ATF can provide comprehensive understanding of the processes and mechanisms of the deformation of the Tibetan Plateau. However, its timing of commencement, amount of displacement and strike-slip rate, as well as the tectonic evolution of the region are still under debate. South of the ATF, there exist a series of oroclinal-like arcuate structures. Knowledge of whether these curved geometries represent original curvatures or the bending of originally straight/aligned geological units has significant tectonic implications for the evolution of the ATF. The Yingxiongling arcuate belt in the western Qaidam Basin and the northern Qaidam marginal thrust belt(NQMTB)north of the Qaidam Basin are the two typical arcuate thrust belts, where the former has a "7-types" structure, and the latter has a reverse "S-type" structure. Successive Cenozoic sediments are well exposed and magnetostratigraphically dated in both belts. Paleomagnetic declination has great advantage to reveal vertical-axis rotations of geological bodies since they become magnetized. Recently conducted paleomagnetic rotation studies in different parts of these two thrust belts revealed detailed Cenozoic rotation patterns and magnitudes of the region. By integrating these paleomagnetic rotation results with regional geometric features and lines of geological evidence, we propose that these two arcuate thrust belts were most likely caused by different rotations in different parts of these curvatures, due to the sinistral strike-slip faulting along the ATF, rather than originally curved ones. The Yingxiongling arcuate belt was shaped by the significant counterclockwise(CCW)rotations of its northwestern half(the Akatengnengshan anticline)near the ATF during~16~11Ma BP, while its southeastern half(the Youshashan anticline)had no significant rotations since at least~20Ma BP. The geometry of the NQMTB was developed firstly by remarkable clockwise rotations of its middle part during~33~14Ma BP, and later possibly CCW rotations of its northwestern part during the Middle to Late Miocene, similar to that of the northwestern part of the Yingxiongling arcuate belt. The characteristics of two-stage strike-slip evolution of the ATF since the Early Oligocene were enriched:1)During the Early Oligocene to mid-Miocene, fast strike-slip faulting along the ATF was proposed to accommodate the eastward extrusion of the northern Tibetan Plateau with its sinistral shear confined to the fault itself. While in the NQMTB and farther east area in the Qilian Shan, its sinistral shear was transferred to the interior of the plateau and was accommodated by deformation of differential crustal shortenings and block rotations in these regions. Thus, the displacement along the ATF west of the NQMTB is larger than that east of the NQMTB. 2)Since the mid-late Miocene, sinistral shear of the ATF was widespread distributed within the northern Tibetan Plateau, instead of concentrated to the fault itself. Its sinistral offsets were partially absorbed by the shortening deformation within the Qaidam Basin and the Qilian Shan, leading the offsets along the ATF decreasing to the east. With the sinistral frictional drag of blocks(the Tarim Basin and the Altyn Tagh Range)on the other side during the second stage evolution of the ATF, a transitional zone south of the ATF was likely developed by remarkable CCW rotations during the Middle to Late Miocene, which is probably confined to east of the Tula syncline. Combining the sinistral offsets along the ATF derived from the paleomagnetic rotations during the Early Oligocene to mid-late Miocene and that by piercing points since the Late Miocene, the post Oligocene strike-slip offsets were constrained as at least~350~430km for the reference in the western Qaidam Basin and~380~460km for the reference in the NQMTB, with an average slip rate of at least~10.6~13.9mm/a. The post Early Oligocene offsets are consistent with the widely accepted offsets of~300~500km obtained by piercing point analyses.  相似文献   

3.
李满  肖骑彬  喻国 《地球物理学报》1954,63(11):4125-4143
阿尔金断裂带东段走滑速率沿断裂走向方向存在明显的流失现象,有关阿尔金断裂带的影响范围及走滑速率变化的机制需要有更多的深部结构证据来提供支撑.本文以阿尔金断裂带昌马段为窗口,获取了4条横穿阿尔金断裂带及相邻地区的大地电磁测深剖面.二维电性剖面显示在阿尔金断裂带北侧中上地壳以连续的高阻体为主,而南侧祁连山内部的深部电性结构在横向上有较为复杂的变化.这一点与区域构造背景相对应,即北侧的塔里木盆地东缘依然具有较好的整体性,南侧的祁连山是青藏高原北缘生长的最前端,变形强烈.在断裂带的结构特征上,阿尔金断裂带沿走向方向的切割深度在昌马盆地西侧发生了显著的降低,与阿尔金断裂带相对应的电性边界在这里向南偏移了约15 km,对应F18断裂,并与昌马盆地相接.祁连山北部的断裂带,包括昌马断裂、旱峡—大黄沟断裂总体呈现出低角度南倾的样式,切过高阻异常体的顶部.虽然昌马盆地可以起到连接断裂带的阶区的作用,将部分阿尔金断裂的走滑分量转移到盆地南侧的昌马断裂上,但是昌马断裂的走滑速率从西向东是增加的,东侧的走滑速率甚至大于阿尔金断裂沿走向方向的流失分量.我们认为在青藏高原北部主要断裂带的活动还是受印度—欧亚板块碰撞引起的远程挤压效应的影响,包括阿尔金断裂以及祁连山内部系列断层都处于斜向挤压应力环境.在这种基本构造模式下,阿尔金断裂、断裂F18、昌马盆地、昌马断裂构成了一个局部的走滑速率分解-转换-吸收体系,对局部应力状态产生影响.  相似文献   

4.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

5.
Geologic maps have long portrayed the Late Cretaceous–Recent geologic history of southeastern Mongolia as tectonically quiescent. We present new data based on outcrop observations that indicate the northeast-trending East Gobi fault zone (EGFZ) was reactivated in the Cenozoic as a sinistral strike-slip fault system. Inversions of Cenozoic fault-slip data imply that faulting was associated with north–northwest subhorizontal shortening and east–northeast subhorizontal extension. We propose that faulting is Tertiary in age based on published interpretations of seismic reflection data which reveal that the mid-Cretaceous (∼100–95 Ma) unconformity is deformed by strike-slip faults, and based on field observation of strike-slip faults and fracture sets that cut Upper Cretaceous and Cenozoic strata but lack evidence for neotectonic activity. Published seismicity maps also appear to argue against significant Quaternary faulting within the EGFZ. These new data may lend credence to published models proposing a Middle Miocene or older kinematic linkage between the EGFZ and the Altyn Tagh fault in China. The recognition that the EGFZ has a history of left-lateral displacement in both the Early Mesozoic and Cenozoic means that currently available estimates of offset based on displaced Paleozoic rocks constrain total offset only. This reactivation history supports the notion that inherited lithospheric structures are important in controlling the location and, thus, modes of intracontinental deformation in Asia as a function of collisional far field effects and evolving boundary conditions of the Pacific margin.  相似文献   

6.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

7.
The Sanweishan fault is located in the northern margin of the Tibetan plateau. It is a branch of the Altyn Tagh fault zone which extends to the northwest. A detailed study on Late Quaternary activity characteristics of the Sanwei Shan Fault can help understanding the strain distribution of the Altyn Tagh fault zone and regional seismic activity and northward growth of the Tibetan plateau. Previous research on this fault is insufficient and its activity is a controversial issue. Based on satellite images interpretation, field investigations and geological mapping, this study attempts to characterize this feature, especially its activity during Late Quaternary. Trench excavation and sample dating permit to address this issue, including determination of paleoseismic events along this fault. The results show that the Sanweishan fault is a large-scale active structure. It starts from the Shuangta reservoir in the east, extending southward by Shigongkouzi, Lucaogou, and Shugouzi, terminates south of Xishuigou, with a length of 175km. The fault trends in NEE, dipping SE at angles 50°~70°. It is characterized by left-lateral strike-slip with a component of thrust and local normal faulting. According to the geometry, the fault can be divided into three segments, i.e. Shuangta-Shigongkouzi, Shigongkouzi-Shugouzi and Shugouzi-Xishuigou from east to west, looking like a left-or right-step pattern. Plenty of offset fault landforms appear along the Sanweishan Fault, including ridges, left-lateral strike-slip gullies, fault scarps, and fault grooves. The trench study at the middle and eastern segments of the fault shows its activity during Late Pleistocene, evidenced by displaced strata of this epoch. Identification marks of the paleoearthquakes and sample dating reveal one paleoearthquake that occurred at(40.3±5.2)~(42.1±3.9) ka.  相似文献   

8.
青藏高原中北部的巴颜喀喇地块是近年来强震最为活跃的地区,自1997年以来在地块周围发生了一系列7级以上地震.2014年于田MS7.3级地震就发生在该地块西边界附近的硝尔库勒盆地南缘,该区是阿尔金断裂、康西瓦断裂和东昆仑断裂等多组不同走向大型走滑活动断裂带的交汇部位,不同断裂走向的突然转变及滑动速率差异使该地区形成局部的拉张应力状态,发育了多条NE和近SN向的左旋正断裂. 通过余震分布、震源机制解结果等资料分析,认为此次地震的发震构造为阿尔金断裂西南端的一条次级断裂——硝尔库勒断裂,地震破裂特征为左旋走滑兼正断性质. 在巴颜喀喇地块这一轮的强震活动中,其北边界和东边界都显示块体向东挤出约7 m的位移量,但块体西边界产生的伸展量明显与整个块体向东的位移量不协调,2014年于田MS7.3级地震是巴颜喀喇地块向东挤出的构造响应和应变调整.模拟结果显示阿尔金主断裂上的库仑应力有所增加,东昆仑—柴达木地块可能为下一个强震活跃区,特别是阿尔金断裂的中西段,是今后应该重点关注和监视的地区.  相似文献   

9.
2014年于田7.3级地震的发震构造及动力学背景的初步分析   总被引:3,自引:0,他引:3  
2004年2月12日新疆维吾尔自治区于田县发生了Ms7.3级地震,其发震断裂为阿尔金断裂带西南段的贡嘎错断裂带.由于地处高山无人区,存在区域历史地震漏记,但1970年以来5级以上地震活动是完整的,近20年来强震活动增强.综合分析认为,2008年于田Ms7.3地震可能加速了本次地震的发生.根据经验统计关系估计,2014年于田地震的同震地表破裂为30-40km,最大水平位错量为1.0-1.5m,地震的复发周期为300-400年.通过阿尔金断裂上前人资料和区域构造的综合分析,认为2014年于田地震是在青藏高原向北东运动背景下左旋走滑的阿尔金断裂向南西端扩展的结果.  相似文献   

10.

Two periods of magma activities, i.e. 106–112 Ma shoshonitic eruption and 82 Ma trachytic intrusion, are recognized at the intersection of the Altyn Tagh fault and the northern marginal fault of the Qilian terrane, northeast of the Tibetan Plateau, which were previously considered to be Quaternary magma activities. The two rock-types have significant differences in mineral assemblage and chemical composition, and formed during two different pulses of magma activity. The Cretaceous magma activities and deformation in or near the Altyn Tagh fault zone suggest a possibly tectonic reactivation after the intense activity of the fault during Indusinian.

  相似文献   

11.
青藏高原北部大型走滑断裂带近地表地质变形带特征分析   总被引:19,自引:9,他引:19  
阿尔金断裂带、东昆仑断裂带和海原断裂带是青藏高原北部的大型左旋走滑断裂带,具有相对高的地质和GPS滑动速率,地表破裂型地震频发。在阿尔金断裂带阿克塞老城西和半果巴、东昆仑断裂带西大滩和玛沁、海原断裂带松山等地点的探槽地质剖面揭露了这些走滑断裂带累积地质变形带的基本特征。阿尔金断裂带半果巴探槽和阿克塞老城西探槽、东昆仑断裂带西大滩探槽和玛沁探槽揭露出的地质变形带宽度约12m左右;海原断裂带松山拉分盆地边界单条走滑断层地质变形带宽度不足10m,考虑到地震期间拉分盆地可能会出现较严重的变形,则拉分盆地本身也应作为强变形带处理。由此可见,经历过多个地震地表破裂循环的东昆仑断裂带、海原断裂带和阿尔金断裂带其地质变形带的宽度是有限的,具有变形局部化特征。单条走滑断层的地质变形带宽度一般为10余米,比较保守地估计应<30m,走滑断层斜列阶区的地质变形带宽度取决于阶区本身的宽度  相似文献   

12.
We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ∼100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (∼3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6–7.8 km/s that we interpret as a zone of crust–mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast–southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range.  相似文献   

13.
祁连山构造带的新构造变形机制   总被引:1,自引:0,他引:1  
论述了祁连山构造带新生代以来的变形过程及形成机制。研究表明: 祁连山构造带的变形过程是在欧亚大陆与印度大陆碰撞汇聚作用下发生和发展的, 其变形过程与整个青藏高原的隆升过程同步进行。其中阿尔金断裂在其东段的走滑贯通对祁连山- 河西走廊地区的构造运动影响很大。上新世末或第四纪初阿尔金断裂东段的走滑导致了祁连山地区应力场的旋转, 进而增大了沿 N W W 向主断裂的水平走滑分量。它是引起主断裂发生走滑的重要原因之一。  相似文献   

14.
通过分析高精度数字化SPOT卫星影像 ,结合野外考察和年代学测试 ,对阿尔金南缘走滑断裂带的 3个典型走滑断层断错地貌点进行了研究。在安南坝沟 ,阿尔金南缘走滑断裂带一主要分支自 (9.36± 0 .73)kaBP以来的左旋滑动速率为 (7.5± 1.7)mm/a ;在七个泉子阿尔金南缘走滑断裂带有 4条分支 ,其中 1条规模较小的断层分支自 (13 86± 1 0 7)kaBP以来的左旋滑动速率为 (2 .3±0 5 )mm/a ,由此推断七个泉子附近断裂带全新世以来的滑动速率为 (6 .9± 1.5 )~ (9.2± 2 .0 )mm/a ;约马克其断裂带自 (4 .73± 0 .38)kaBP以来的左旋滑动速率为 (10 .6± 3.0 )mm/a。综合以上各点结果 ,阿尔金南缘走滑断裂带中段 88°30′E与 93°0 5′E之间全新世以来的水平滑动速率为 7~ 11mm/a ,与最新的GPS观测结果非常接近  相似文献   

15.
In this study, we described a 14km-long paleoearthquakes surface rupture across the salt flats of western Qaidam Basin, 10km south of the Xorkol segment of the central Altyn Tagh Fault, with satellite images interpretation and field investigation methods. The surface rupture strikes on average about N80°E sub-parallel to the main Altyn Tagh Fault, but is composed of several stepping segments with markedly different strike ranging from 68°N~87°E. The surface rupture is marked by pressure ridges, sub-fault strands, tension-gashes, pull-apart and faulted basins, likely caused by left-lateral strike-slip faulting. More than 30 pressure ridges can be distinguished with various rectangular, elliptical or elongated shapes. Most long axis of the ridges are oblique(90°N~140°E)to, but a few are nearly parallel to the surface rupture strike. The ridge sizes vary also, with heights from 1 to 15m, widths from several to 60m, and lengths from 10 to 100m. The overall size of these pressure ridges is similar to those found along the Altyn Tagh Fault, for instance, south of Pingding Shan or across Xorkol. Right-stepping 0.5~1m-deep gashes or sub-faults, with lengths from a few meters to several hundred meters, are distributed obliquely between ridges at an angle reaching 30°. The sub-faults are characterized with SE or NW facing 0.5~1m-high scarps. Several pull-apart and faulted basins are bounded by faults along the eastern part of the surface rupture. One large pull-apart basins are 6~7m deep and 400m wide. A faulted basin, 80m wide, 500m long and 3m deep, is bounded by 2 left-stepping left-lateral faults and 4 right-stepping normal faults. Two to three m-wide gashes are often seen on pressure ridges, and some ridges are left-laterally faulted and cut into several parts, probably owing to the occurrence of repetitive earthquakes. The OSL dating indicates that the most recent rupture might occur during Holocene.
Southwestwards the rupture trace disappears a few hundred meters north of a south dipping thrust scarp bounding uplifted and folded Plio-Quaternary sediments to the south. Thrust scarps can be followed southwestward for another 12km and suggest a connection with the south Pingding Shan Fault, a left-lateral splay of the main Altyn Tagh Fault. To the northeast the rupture trace progressively veers to the east and is seen cross-cutting the bajada south of Datonggou Nanshan and merging with active thrusts clearly outlined by south facing cumulative scarps across the fans. The geometry of this strike-slip fault trace and the clear young seismic geomorphology typifies the present and tectonically active link between left-lateral strike-slip faulting and thrusting along the eastern termination of the Altyn Tagh Fault, a process responsible for the growth of the Tibetan plateau at its northeastern margin. The discrete relation between thrusting and strike-slip faulting suggests discontinuous transfer of strain from strike-slip faulting to thrusting and thus stepwise northeastward slip-rate decrease along the Altyn Tagh Fault after each strike-slip/thrust junction.  相似文献   

16.
As a result of the left-lateral strike-slipping of the Altyn Tagh fault in Neotectonic period, a contra-rotational structure, namely the Zhaobishan vortex structure, has developed at the juncture of the main Altyn Tagh fault and the northern fringe fault of the Qilian Mountains.Preliminary analysis on the deformation and evolution of the Zhaobishan vortex structure. In combination with the previous data, suggests that the tectonic transform between the Altyn Tagh fault and the northern fringe fault of the Qilian Mountains attributes to the deformation of the rotational structure. The existence of a series of rotational structures along the Altyn Tagh fault and on the northeastern edge of the Qinghai-Xizang(Tibet) plateau indicate that as the substance in the northern Qinghal-Xizang (Tibet) plateau moves clockwise around the eastern tectonic knot of the Himalayas, rotational structures become the principal mode on the northern marginal zone of the Plateau of transforming and absorbing tectonic deformation.  相似文献   

17.
Yuan  Zhaode  Liu-Zeng  Jing  Zhou  You  Li  Zhigang  Wang  Heng  Yao  Wenqian  Han  Longfei 《中国科学:地球科学(英文版)》2020,63(1):93-107
The Altyn Tagh fault is one of the few great active strike-slip faults in the world. The recurrence characteristics of paleoearthquakes on this fault are still poorly understood due to the lack of paleoseismic records recorded in high-resolution strata. We document a paleoseismic record in a pull-apart basin along the Wuzunxiaoer section of the central Altyn Tagh fault.The high-resolution strata recorded abundant seismic deformations and their sedimentary responses. Four earthquakes are identified based on event evidence in the form of open fissures, thickened strata, angular unconformities, and folds. The occurrence times of the four events were constrained using radiocarbon dating. Event W1 occurred at AD1220–1773, events W2 and W3 occurred between 407 and 215 BC, and event W4 occurred slightly earlier at 1608–1462 BC, indicating clustered recurrence characteristics. A comparison of the earthquake records along the Wuzunxiaoer section with other records along the Xorkoli section suggests that both sections ruptured during the most recent event.  相似文献   

18.
The Gobi Altai region of southwestern Mongolia is a natural laboratory for studying processes of active, transpressional, intracontinental mountain building at different stages of development. The region is structurally dominated by several major E—W left-lateral strike-slip fault systems. The North Gobi Altai fault system is a seismically active, right-stepping, left-lateral, strike-slip fault system that can be traced along the surface for over 350 km. The eastern two-thirds of the fault system ruptured during a major earthquake (M = 8.3) in 1957, whereas degraded fault scarps cutting alluvial deposits along the western third of the system indicate that this segment did not rupture during the 1957 event but has been active during the Quaternary. The highest mountains in the Gobi Altai are restraining bend uplifts along the length of the fault system. Detailed transects across two of the restraining bends indicate that they have asymmetric flower structure cross-sectional geometries, with thrust faults rooting into oblique-slip and strike-slip master faults. Continued NE-directed convergence across the fault system, coupled with left-lateral strike-slip displacements, will lead to growth and coalescence of the restraining bends into a continuous sublinear range, possibly obscuring the original strike-slip fault system; this may be a common mountain building process.

The largely unknown Gobi-Tien Shan fault system is a major left-lateral strike-slip fault system (1200 km + long) that links the southern ranges of the Gobi Altai with the Barkol Tagh and Bogda Shan of the easternmost Tien Shan in China. Active scarps cutting alluvial deposits are visible on satellite imagery along much of its central section, indicating Quaternary activity. The total displacement is unknown, but small parallel splays have apparent offsets of 20 + km, suggesting that the main fault zone has experienced significantly more displacement. Field investigations conducted at two locations in southwestern Mongolia indicate that late Cenozoic transpressional uplift is still active along the fault system. The spatial relationship between topography and active faults in the Barkol Tagh and Bogda Shan strongly suggests that these ranges are large, coalescing, restraining bends that have accommodated the fault's left-lateral motion by thrusting, oblique-slip displacement and uplift. Thus, from a Mongolian perspective, the easternmost Tien Shan formed where it is because it lies at the western termination zone of the Gobi-Tien Shan fault system. The Gobi-Tien Shan fault system is one of the longest fault systems in central Asia and, together with the North Gobi Altai and other, smaller, subparallel fault systems, is accommodating the eastward translation of south Mongolia relative to the Hangay Dome and Siberia. These displacements are interpreted to be due to eastward viscous flow of uppermost mantle material in the topographically low, E–W trending corridor between the northern edge of the Tibetan Plateau and the Hangay Dome, presumably in response to the Indo-Eurasian collision 2500 km to the south.  相似文献   


19.
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45'E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.  相似文献   

20.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号