首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
近2600年来黄河下游沉积量和上中游产沙量变化过程   总被引:2,自引:0,他引:2       下载免费PDF全文
主要基于华北平原上93个钻孔中沉积物详细观测和分析数据,结合182组14C测年和埋深数据、参考前人黄河下游河道历史变迁及其他相关研究成果,估算出2600年以来黄河下游在602BC~11A.D.,11~1034A.D.,1034~1128A.D.,1128~1855A.D.和1855~1997A.D.等5个历史时期的年平均沉积量分别是3.89×108t/a,2.24×108t/a,6.63×108t/a,6.78×108t/a和8.47×108t/a。通过建立黄河下游有无堤防和决溢频率与泥沙输移比的关系,计算出5个时期黄河上中游的平均年输沙量分别是6.2×108t/a,6.8×108t/a,8.3×108t/a,11.5×108t/a和15.3×108t/a。进而探讨了黄河输沙量变化的主要原因,以及历史上王景治河后出现的600年安流时期的原因。  相似文献   

2.
中国的多年冻土──过去与现在   总被引:14,自引:0,他引:14       下载免费PDF全文
邱国庆  程国栋 《第四纪研究》1995,15(1):13-22,97
中国多年冻土区的总面积约占中国陆地面积的22.4%,达2150000km2。多年冻土的分布特征受气候条件在三度空间的变化所制约。自晚更新世以来,其分布情况已有相当的变化。在东次冰期最盛期,东北地区多年冻土南界曾推进到北纬41—42°,在全新世暖期,南界向北退缩,但晚更新世形成的冰楔和多年冻土至今仍存在于大兴安岭北部,全新世中期严寒期冻土有所扩展并形成冰楔。随着气候变化,中国西部高山和高原区高海拔冻土的分布下界已上移800—1000m,但高山和高原的主要部分仍处于冰缘环境,有的地方在全新世还发育了共生型多年冻土。  相似文献   

3.
李兆麟  李文  杨荣勇  翟伟 《矿床地质》1998,17(Z3):453-456
丫口宝石伟晶岩产于哀牢山南段二长花岗岩及变质岩中,伟晶岩含熔融包裹体、熔融一流体包裹体、CO2流体包裹体及气-液包裹体。成矿温度为105~185℃,压力30~45 MPa,成矿溶液富含CO2、HCO3,盐度17%~24%NaCI,fO2=10-36~10-37.4718O值变化范围在7.9‰~8.7‰,δD为- 57‰~- 68‰,δ13C为2.1‰~-0.1‰。成矿物质来源于基底建造,属变质深熔成因,成矿时代为喜山期。  相似文献   

4.
地表MPBL系统及两个尺度的全球变化模型   总被引:2,自引:0,他引:2  
提出了地表MPBL系统的概念,并认为它是一个开放性的复杂巨系统;在此基础上探讨了地表MPBL系统内的三大类复合系统及其自组织问题,给出了一个较完整的地表MPBL系统结构模式,可作为认识各种时间尺度全球环境变化的研究纲领;为了适应103~105a、101~102a两个尺度全球环境变化研究需要,也对这两个尺度全球环境变化模型进行了一些改进,使其更符合地表MPBL系统概念。  相似文献   

5.
李延河  李金城  宋鹤彬 《矿床地质》1998,17(Z4):733-736
太平洋中部CC区海底多金属结核的氦丰度和同位素比值被测定,3He/4He= 1.73×10-5~13.26×10-5。通过与大气、地壳、地幔及宇宙尘的氦同位素对比提出多金属结核的。3He/4He比值异常可能与海底热液或宇宙尘的注入有关。根据氦同位素异常与海底热液活动的关系指出结核中的成矿物质可能主要来源于海底热液;深晦沉积物与多金属结核的3He/4He比值相似,表明沉积物的沉积速率与多金属结核的生长速率基本一致。  相似文献   

6.
荷花坪锡多金属矿床是南岭中段湘南地区新发现的一个大型矿床,发育有印支期和燕山期2期成岩、成矿作用。文章对不同期矿石中的黄铁矿分别进行了稀有气体同位素研究。测试结果表明,印支期矽卡岩型矿石中的黄铁矿:3He/4He=0.15~2.49 Ra,38Ar/36Ar=0.18733~0.18902,40Ar/36Ar=310.45~523.98,20Ne/22Ne=9.727~9.830,21Ne/22Ne=0.0286~0.0310;燕山期蚀变碎裂岩型矿石中的黄铁矿:3He/4He=0.15~4.33 Ra,38Ar/36Ar=0.18750~0.18843,40Ar/36Ar=331.78~602.62,20Ne/22Ne=9.736~9.858,21Ne/22Ne=0.0286~0.0305,显示区内两期成矿流体均为大气饱和水、地壳流体和地幔流体的混合流体。印支期矽卡岩型矿石中地幔He所占比例为2.34%~41.40%,平均18.16%;燕山期蚀变碎裂岩型矿石中地幔He所占比例为2.34%~72.12%,平均27.41%,燕山期幔源流体的作用强度略高于印支期。湘南地区印支期基性岩浆活动及荷花坪矿床印支期成矿过程中有幔源物质的参与,二者共同指示南岭地区中生代构造体制的转换或岩石圈伸展减薄可能始于印支主期(244~230 Ma)之后的224 Ma左右,即晚三叠世。  相似文献   

7.
湖相碳酸盐岩是一种分布极其广泛的陆相碳酸盐岩。中国湖相碳酸盐岩沉积始于二叠纪—三叠纪,经侏罗纪—白垩纪发展,鼎盛于古近纪,具有沉积时间跨度长、分布面积广的特征。碳酸盐岩发育方式多样,常以多个单层、薄夹层状、互层状、韵律沉积为主,也见以结核状或钙质微体化石等薄层赋存于泥岩、页岩等细粒碎屑岩中。湖相碳酸盐岩δ13C值介于-10.0×10-3~+10.0×10-3之间,多数为-5.0×10-3~+5.0×10-3,正负值均有。二叠系—三叠系δ13C发生负偏,侏罗系—白垩系先正向漂移随后负偏,古近系—新近系再次正偏,达最大值约+5.0×10-3。氧同位素δ18O值介于-20.0×10-3~+2.0×10-3之间,多数为-15.0×10-3~-0.0×10-3,几乎全部为负值。二叠系—三叠系、侏罗系—白垩系碳酸盐岩δ18O值在-15.0×10-3~-3.0×10-3之间变化,古近系—新近系δ18O值明显正偏移,多数位于-10.0×10-3~0.0×10-3。中国湖相碳酸盐岩碳氧同位素相关性分析表明,δ13C与δ18O密切相关,且δ13C值多正值或轻微负值,指示湖泊为封闭型咸水—半咸水环境;δ13C和δ18O不相关,δ13C值为负值,指示湖泊为开放型淡水环境。  相似文献   

8.
我国主要钼(铜)成矿带的铼-锇年龄及成矿时、空演化   总被引:1,自引:0,他引:1  
黄典豪 《矿床地质》1998,17(Z4):813-816
本文将我国钼和铜,钼矿床归属子7个主要成矿带,并据其中典型矿床的辉钼矿Re-Os年龄,阐明所述矿带和矿床的时、空演化特征:东部隶属太平洋构造域的燕辽、东秦岭、长江中下游、赣东北和湘南成矿带的成矿高峰期为燕山期(189×106~106×l06 a);古亚洲构造域的多宝山矿带成矿时代为加里东期( 512×l06~40g×l06 a)。西部金沙江.红河成矿带主要是喜山期(36×l06 a左右)成矿。燕辽和东秦岭两个钼矿带的成矿作用分别有从燕山早期(189×l06~177×l06 a)到中晚期(148×106~134×106 a)和从148×l06~138×106 a的自东向西迁徙趋势;长江中下游铜-钼矿带的成矿作用自西北一东南呈燕山中晚期(141×106 a)一晚期(106×l06 a)的趋势。这同3个成矿带内与成矿有关花岗岩类侵位的相应先后次序大体相吻合。  相似文献   

9.
南冈底斯晚白垩世岩浆岩的成因及地球动力学机制一直存在争议。本文对冈底斯南缘努林花岗闪长岩开展地球化学、锆石U-Pb年代学及同位素示踪研究。结果显示,该岩体具有富SiO2(66.62%~67.81%)、高Al2O3(15.11%~15.66%)、高Sr(>481×10-6),低Y(≤8.13×10-6)和低Yb(≤0.73×10-6)特征,Sr/Y比值达59~111,显示埃达克岩的特征;岩石轻稀土富集,重稀土亏损,具有显著的Eu正异常;富集大离子亲石元素,亏损高场强元素。(87Sr/86Sr)i=0.704011~0.704244,εNd(t)=+3.61~+5.75,总体反映地幔源区的Sr、Nd同位素特征。锆石U-Pb LA-ICP-MS测年显示存在83Ma和89Ma两组年龄。结合地质及地球化学分析,认为努林花岗闪长岩是新特提斯洋洋脊俯冲引起的镁铁质新生下地壳部分熔融的产物。  相似文献   

10.
长江河口水下三角洲137Cs地球化学分布特征   总被引:10,自引:8,他引:2       下载免费PDF全文
文章通过对长江口水下三角洲采集的10个柱状样放射性核素137Cs的分析可以得知,长江口水下三角洲137Cs剖面中均存在清晰的最大蓄积峰,其峰值比活度介于5.68±1.03~21.74±1.39Bq/kg之间,平均值为14.11±1.10Bq/kg,最大蓄积峰所处的深度为55~117cm。剖面中137Cs最大蓄积峰应该与1963年的137Cs散落沉降相对应。长江口水下三角洲的表层沉积物中的137Cs比活度范围介于0~9.19±1.12Bq/kg之间,并且与长江流域其他地区的表层137Cs比活度相一致。长江口水下三角洲可探测到的137Cs比活度的最大深度范围在88~160cm的范围内变化,137Cs蓄积总量为2361.30±174.38~17714.94±262.14Bq/m2,平均值为9664.97±100.05Bq/m2,137Cs比活度的最大深度及137Cs蓄积总量均表现出从岸向海逐渐增加的趋势。实测的137Cs总量均大于长江流域的137Cs背景值,说明了长江口水下三角洲的137Cs蓄积既有大气散落直接沉降的来源,又有流域侵蚀带来的137Cs输入,并且主要以后者为主。通过放射性核素示踪模型分析长江口水下三角洲137Cs散落蓄积特征可以得知,长江口水下三角洲137Cs的蓄积以长江流域来源为主,说明了放射性核素137Cs在长江口水下三角洲沉积物中的蓄积主要受流域侵蚀因素的影响。  相似文献   

11.
《China Geology》2022,5(3):475-509
Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community. As the world’s third pole, the global warming amplifier, and the starting region of China’s climate change, the Qinghai-Tibet Plateau is extremely sensitive to climate change. The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates (NGHs) resources. Under the background of global warming, whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community. Given this, this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau. Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau, this study investigated the changes in the response of the NGHs to global warming, aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau. A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau. Over the past decades, the increase in the mean annual air temperature of the plateau was increasingly high and more recently. Specifically, the mean annual air temperature of the plateau changed at a rate of approximately 0.308–0.420°C/10a and increased by approximately 1.54–2.10°C in the past decades. Moreover, the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155–1.575°C and the permafrost area decreased by approximately 0.34×106 km2 from about 1.4×106 km2 to 1.06×106 km2 in the past decades. As indicated by simulated calculation results, the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29–39 m in the past 50 years, with the equivalent of (1.69 – 2.27)×1010–(1.12–1.51)×1012 m3 of methane (CH4) being released due to NGHs dissociation. It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m, and dissociated and released NGHs will be the equivalent of (1.34–88.8)×1010 m3 and (1.57–104)×1010 m3 of CH4, respectively by 2030 and 2050. Considering the positive feedback mechanism of NGHs on global warming and the fact that CH4 has a higher greenhouse effect than carbon dioxide, the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH4 into the atmosphere, which is an important trend of NGHs under the background of global warming. Therefore, the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality. Accordingly, this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau, accelerate research on the techniques and equipment for NGHs extraction, storage, and transportation, and exploit the permafrost-associated NGHs while thawing them. The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect, thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.©2022 China Geology Editorial Office.  相似文献   

12.
青藏铁路清水河地区路基下伏多年冻土地温变化特征研究   总被引:4,自引:2,他引:4  
基于埋设在青藏铁路清水河地区路基中两个断面内的共8个地温测试孔3年来的地温观测资料,研究了该地区铁路路基下伏高原多年冻土融化特征,分析了多年冻土上限的变化规律以及填筑铁路路基施工对下伏多年冻土赋存条件的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土近地表的地温变化特征与天然地面下的多年冻土的地温变化特征有明显的不同,且向阳面与被阴面差别较大。多年冻土的上限在施工初期会有一个明显的下移沉降,随着时间的推移,虽然残存在路基中的热量逐渐消散,多年冻土上限下降会逐渐稳定。由于受到太阳辐射和路基边坡形状及融化夹层的影响,多年冻土上限会逐渐稳定,但不会在短时期内上升到天然地面下多年冻土的上限水平。  相似文献   

13.
Recent investigations into relict periglacial phenomena in northern and western China and on the Qinghai–Tibet Plateau provide information for delineating the extent of permafrost in China during the Late Pleistocene. Polygonal and wedge‐shaped structures indicate that, during the local Last Glacial Maximum (LLGM, between ~35 and 10.5 ka BP), the southern limit of latitudinal permafrost in northern China advanced southward at least to ~38–40°N in the east and to ~37–39°N in the west. This represents an advance of about 5–10° of latitude beyond present‐day permafrost limits. The lower limits of elevationally controlled permafrost on the Qinghai–Tibet Plateau and its peripheries were about 1000 m lower: this permafrost was largely continuous during the LLGM. This suggests a cooling of between 4 and 10°C, or more. This paper discusses the extent of permafrost during the LLGM and presents maps that have been constructed on the basis of extensive and integrative analysis of all reliable and pertinent data. The results indicate that the extent of LLGM permafrost in China was between ~3.8 and 4.3×106 km2. This is 80 to 100% more than that of ~2.15×106 km2 in the 1970s, and 120 to ~150% more than that of ~1.75×106 km2 today.  相似文献   

14.
冻土区甲烷排放研究进展   总被引:6,自引:0,他引:6  
冻土区土牡表面和活动层土的CH排放和吸收表现出强烈的时空变化性。根据多年冻土中CH含量的模拟结果表明,全球尺度上,平均每米厚度多年冻土含有CH65Tg。在未来的200年间,多年冻土融化所导致的大气CH附加年源强变化于2~25Tg。  相似文献   

15.
This study presents a multiproxy record of Holocene environmental change in the region East of the Pechora Delta. A peat plateau profile (Ortino II) is analyzed for plant macrofossils, sediment type, loss on ignition, and radiocarbon dating. A paleosol profile (Ortino III) is described and radiocarbon dated. A previously published peat plateau profile (Ortino I) was analyzed for pollen and conifer stomata, loss on ignition, and radiocarbon dating. The interpretation of the latter site is reassessed in view of new evidence. Spruce immigrated to the study area at about 8900 14C yr B.P. Peatland development started at approximately the same time. During the Early Holocene Hypsithermal taiga forests occupied most of the present East-European tundra and peatlands were permafrost free. Cooling started after 5000 14C yr B.P., resulting in a retreat of forests and permafrost aggradation. Remaining forests disappeared from the study area around 3000 14C yr B.P., coinciding with more permafrost aggradation. The retreat of forests resulted in landscape instability and the redistribution of sand by eolian activity. The displacement of the Arctic forest line and permafrost zones indicates a warming of at least 2–3°C in mean July and annual temperatures during the Early Holocene. At least two cooling periods can be recognized for the second half of the Holocene, starting at about 4800 and 3000 14C yr B.P.  相似文献   

16.
Permafrost changes under natural sites along the Qinghai-Tibet Railway were investigated based on the ground temperature monitored from the year of 2006 to 2015. Among these sites, mean permafrost table was 3.54 m, with a range of 0.88 to 9.14 m. Among the sites with decreasing permafrost table, mean decreasing amplitude of permafrost table was 0.51 m, with a range of 0.05 to 2.22 m; mean decreasing rate of permafrost table was 0.07 m/a, with a range of 0.01 to 0.25 m/a. Decreasing amplitude and decreasing rate of permafrost table in high temperature regions were 0.47 m and 0.06 m/a greater than those in low temperature regions, respectively. In general, ground temperatures at permafrost table and 15 m depth presented rising tendency. Mean rising amplitude of ground temperature at permafrost table was 0.16 ℃, with a range of 0.01 to 0.60 ℃; mean rising rate of ground temperature at permafrost table was 0.018 ℃/a, with a range of 0.001 to 0.067 ℃/a. Rising amplitude and rising rate of ground temperature at permafrost table in low temperature regions were 0.12 ℃ and 0.014 ℃/a greater than those in high temperature regions, respectively. Mean rising amplitude of ground temperature at 15 m depth was 0.10 ℃, with a range of 0.01 to 0.48 ℃; mean rising rate of ground temperature at 15 m depth was 0.011 ℃/a, with a range of 0.002 to 0.054 ℃/a. Rising amplitude and rising rate of ground temperature at 15 m depth in low temperature regions were 0.11 ℃ and 0.012 ℃/a greater than those in high temperature regions, respectively. Due to the effect of local factors, increasing of permafrost table and decreasing of ground temperature were observed under several sites.  相似文献   

17.
《China Geology》2021,4(1):17-31
The Qinghai-Tibet Plateau (also referred to as the Plateau) is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates (NGH). Up to now, one NGH accumulation, two inferred NGH accumulations, and a series of NGH-related anomalous indicators have been discovered in the Plateau, with NGH resources predicted to be up to 8.88×1012 m3. The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas. They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment. Furthermore, they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH. The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms. The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP, respectively. Under the context of global warming, the permafrost in the Qinghai-Tibet Plateau is continually degrading, which will lead to the changes in the stability of NGH. Therefore, The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment.©2021 China Geology Editorial Office.  相似文献   

18.
青藏高原清水河多年冻土区铁路路基沉降变形特征研究   总被引:3,自引:1,他引:3  
通过埋设在青藏铁路路基中两个断面内的6条沉降观测管3 a来的地基沉降变形资料,研究了高原多年冻土区铁路路基的沉降变形特征,分析了填筑铁路路基对下伏多年冻土融化变形的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土上限在施工初期会有一个明显的下移沉降,铁路路基也随之有一个较大幅度的工后下沉变动,随着时间的推移,路基下降速率会逐渐下降,但在短时间内不会停止下来,而且由于太阳辐射和路基边坡形状的影响,路基向阳面与背阴面的变形有较大的差别,且在近南北向展布的路基上表现最为明显。  相似文献   

19.
The southern margin of permafrost is experiencing unprecedented rates of thaw, yet the effect of this thaw on northern water resources is poorly understood. The hydrology of the active layer on a thawing peat plateau in the wetland-dominated zone of discontinuous permafrost was studied at Scotty Creek, Northwest Territories (Canada), from 2001 to 2010. Two distinct and seasonally characteristic levels of unfrozen moisture were evident in the 0.7-m active layer. Over-winter moisture migration produced a zone of high ice content near the ground surface. The runoff response of a plateau depends on which of the three distinct zones of hydraulic conductivity the water table is displaced into. The moisture and temperature of the active layer steadily rose with each year, with the largest increases close to the ground surface. Permafrost thaw reduced subsurface runoff by (1) lowering the hydraulic gradient, (2) thickening the active layer and, most importantly, (3) reducing the surface area of the plateau. By 2010, the cumulative permafrost thaw had reduced plateau runoff to 47 % of what it would have been had there been no change in hydraulic gradient, active layer thickness and plateau surface area over the decade.  相似文献   

20.
A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (~2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ15N and δ13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号