首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
INTRODUCTIONTheYellowSeaandtheEastChinaSea (ECS)aremarginalseasofthenorthwestPacificandhaveexpansivecontinentalshelves .TheuniqueandstrikingfeaturesoftheYellowSeaandtheECSarethattheyhavestrongtidalcurrent;aresubjecttostrongmonsooninfluence ;andreceiveinflowfromthebiggestriverinChina ,theChangjiangRiver ;andthatthefamouswesternboundarycurrent,theKuroshio ,passesthroughtheECS ,withitsbranchesintrudingupwardintothecontinentalshelfareas.Generallyspeaking ,thewaterexchangecapacityofthe…  相似文献   

2.
Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment transport in this sea. Some results obtained were: (1) The Taiwan Warm Current flowing northwards seemed to be a barrier preventing suspended matter discharged from the Changjiang River Estuary from continuously moving southeastward and causing the suspended matter to flow along a path near 123°30′E in summer and 123°00′E in winter. (2) Suspended matter in the area adjacent to the Changjiang River Estuary could not be transported southward along the coast in summer due to opposing offshore currents including the Taiwan Warm Current flowing northward and the Changjiang Diluted Water turning northeastward. (3) The thermocline and temperature front bar suspended matter from crossing through.  相似文献   

3.
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises. There was something special in the observations for the Yellow Sea Warm Current (YSWC), the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year. The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind. It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter. Resulting from the reduced Changjiang River discharge, the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons. The other water masses seemed normal without noticeable anomalies in 2011. The Yellow Sea Coastal Current (YSCC) water, driven by the northerly wind, flowed southeastward as a whole except for its northeastward surface layer in summer. The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement. The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.  相似文献   

4.
INTRODUCTIONTheSubeiShoalandtheChangjiangRiverestuarineareainthewestoftheHuanghaiandEastChinaSeasisoneofthemarginalseasintheworld ,wheresuspendedmatterisextremelyhigh .Here ,notonlyistheretheTaiwanWarmCurrentoneoftheKuroshio’sbranchesintheEastChinaSea,butalsotheHuanghaiCoastalCurrent,andChangjiangDilutedWater.Sothestrongmixingbetweenthecoastalandoffshorewaterscomplicatessuspendedmatterdistributioninthisarea.HowthesuspendedmatterdischargedfromtheChangjiangRiverandtheabandonedHuan…  相似文献   

5.
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of the SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.  相似文献   

6.
Distribution of suspended matter in seawater in the Southern Yellow Sea is investigated in five regions: 1) the Northern Jiangsu bank, the highest TSM (total suspended matter) content region; 2) the high TSM content region off the Changjiang River mouth; 3) the high TSM content region off the Chengshan Cape; 4) the low TSM region off Haizhou Bay; 5) the central part of the Southern Yellow Sea, a low TSM content region. The vertical distribution of TSM is mainly characterized by a spring layer of suspended matter, written as “suspended-cline” whose genesis is related to storms in winter. In this paper, non-combustible components and grain sizes in suspended matter, relationship between suspended matter and bottom sediments, and salinity in seawater are described. Investigation result shows that, in this area, suspended matter comes mainly from resuspended bottom sediment and secondarily from present discharge loads from rivers and biogenic materials. Discharged sediments from the Huanghe River move around the Chengshan Cape and affect the northwestern region of this area. Sediments from the Changjiang River affect only the southern part and have little or no direct influence on the central deep region. Wave is the main factor affecting distribution of suspended matter. Water depth controls the critical depth acted on by waves. The cold water mass in the central region limits horizontal and vertical dispersions of terrigenous materials. Suspended matter here has the transitional properties of the epicontinental sea. Its concentration and composition are different from those of a semi-closed sea (such as the Bohai Sea) and those of the East China Sea outer continental shelf or those near oceanic areas.  相似文献   

7.
Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Moderate Resolution Imagine Spectroradiometer Terra imagery. The squared correlation coefficient is 0.8358, and the root mean square error is 0.4285 mg L-1. The model reflects the distribution characteristics of surface suspended matter in the inner shelf of the East China Sea. In this paper, the satellite images of the study area were retrieved in January from 2001 to 2015, and the monthly distribution of surface suspended matter were obtained. The inter-annual distribution of the study area is similar, and the concentration of surface suspended matter is higher near the shore than offshore. A large amount of surface suspended matter is transported southeast under the influence of Zhejiang and Fujian coastal current and Taiwan warm current. Only a small amount of surface suspension can reach the Kuroshio area. The surface suspended matter concentration changes obviously near the estuary because of the effect of differences in the flux of the Yangtze River. Meanwhile, winter monsoon, temperature front, El Ni?o events, and other factors affect the distribution of surface suspended matter in 100 m isobath to coastal water but minimally influence the distribution in 100 m isobath to deep sea.  相似文献   

8.
Seasonality and causes of the Yellow Sea Warm Current   总被引:1,自引:0,他引:1  
To study the seasonality and causes of the Yellow Sea Warm Current (YSWC) in detail, rotated empirical orthogonal function (REOF) and extended associate pattern analysis are adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that in the Yellow and East China Seas, the YSWC is a mean barotropic flow as compensation of winter-monsoon-driven surface currents, which has been directly observed. When East Asia winter monsoon weakens, so do the meridional pressure gradient of the surface seawater and the YSWC, while the transversal pressure gradient changes rather slowly that results in the YSWC left turning. In addition, there is southward mean flow compensation of summer-monsoon-driven surface currents, which actually was also directly ob-served.  相似文献   

9.
We review the species composition,distribution, and seasonal variation of fouling acorn barnacles in Chinese waters-from Bohai Sea and Yellow Sea to East and South China Seas. Thirty-two species of acorn barnacles were found, of which, the dominant species are Amphibalanus amphitrite, A. reticulatus, A. variegates, Balanus trigonus, Fistulobalanus kondakovi, Megabalanus tintinnabulum, Striatobalanus amaryllis, and Eurapha withersi in the fouling communities. A. amphitrite is the dominant species in the coastal waters of Bohai Sea and Yellow Sea and A. reticulatus is dominant in the East and South China Seas. The settlement period of fouling acorn barnacles is usually in summer and autumn. From north to south with the decrease of latitude, their settlement period obviously extends, even to the whole year, and the species number also increases.0ther environmental factors, such as salinity and distance from shore, also play an important role in the distribution of fouling acorn barnacles.  相似文献   

10.
Study of 1986 and 1987 heavy metal distribution in surface water of the Kuroshio area in the East China Sea showed regional and slight seasonal variations in distribution and concentration . Heavy metal levels in Taiwan Strait, the sea area north of Taiwan and the continental shelf are higher than those in the main axis of the Kuroshio . Dissolved Cu in summer and winter decreases with the increase of salinity , but dissolved Cd has no obvious change with salinity .  相似文献   

11.
Measurement of the surface emissivity of turbid waters   总被引:2,自引:0,他引:2  
For interpreting thermal IR imagery of the ocean surface, the emissivity of the sea surface is usually assumed to be constant, approximately 0.98. However, the emissivity varies with the roughness of the sea surface, and the concentration and type of suspended particulates. The emissivity variations caused by the suspended sediments introduce significant errors in the satellite-derived temperature maps of turbid coastal waters. We measured in the laboratory the thermal IR emissivity of water as the suspended sediment concentration was varied from zero to extremely high values. The results indicated that increasing the sediment concentration decreases the spectral emissivity within the 8–14 μm waveband. Editor’s note A conference on West Pacific Circulation Influence in China Seas (WEPACICS) was held during November 10–14, 1986 in Qingdao, China, under the joint auspices of the Institute of Onceanology, Academic Sinica (IOAS) and the National Science Foundation, United States, and under the convernorship of Ya Hsueh, Florida State University, and Hu, Dunxin, IOAS. The primary subject of the conference is the influence of the West Pacific Circulation in the Yellow Sea and the East China Sea through the intermediary of the Kuroshio. In the conference more than 20 papers were presented, summarizing the works on the interaction between the Yellow and East China Sea, and the oceanic circulation, and the research experiences gained in the studies of the Gulf Stream and its influences in the U.S. Coastal waters were shared. In order to facilitate scientific exchange we chose to published successively the significant papers presented at the conference in the journal.  相似文献   

12.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

13.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

14.
THE RESUSPENSION RATE OF SEDIMENTS IN 32°N SECTION ON THE EAST CHINA SEA   总被引:1,自引:0,他引:1  
INTRODUCTIONThe“greenhouseeffect”resultingfromtheincreasingcarbondioxideintheatmospheresignifi cantlyaffectstheglobalaveragetemperature (Deter,1 978) ,hasdrawntheattentionofscientistsaroundtheworld .Scientistsconsiderthatknowledgeoftheocean’scapacitytoabsor…  相似文献   

15.
Circulation in China Seas has been investigated by Chinese oceanographers in some detail for many years. However, owing to data being sparse and scarce, studies were basically concerned in interseasonal (mainly summer and winter) fluctuations and almost none was in the interannual variability of the circulation in China Seas. It is pointed out that the routine (monthly or bimonthly) hydrographical section data on the continental shelf of China Seas accumulated since 1975, can be used to examine the interannual variability of the shelf circulation. An example is given to show there is interannual variability of shelf circulation in the East China Sea. And what is more, a hypothesis is proposed to describe where the interannual variability comes from and to explain why it is strongly correlated with El Niño events. It is strongly suggested that the interannual variability of the shelf circulation in China Seas be studied, as a strategy, with the routine hydrographical survey, which should be seriously continued, combined with cooperative study in the Philippine Sea and the western tropical Pacific Ocean.  相似文献   

16.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

17.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

18.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

19.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

20.
Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A total of 562 macrobenthic species were identified, with polychaetes and mollusks accounting for 67% of the total number of species. A similarity percentage(SIMPER) analysis showed that the dominant species were bivalve mollusks in the Yellow Sea and small-sized polychaetes in the East China Sea. A two-factor analysis of variance showed significant seasonal variations in species number, density and diversity index, and significant regional differences of biomass and density. Two-factor community similarity analysis also showed significant seasonal and regional differences in macrobenthic communities. Canonical correspondence analysis indicated that the main environmental factors af fecting the macrobenthic communities were water depth, temperature, dissolved oxygen, and inorganic nitrogen. The results demonstrate significant regional differences and seasonal variations in macrobenthos in the two seas. Sediment properties and water mass characteristics are speculated to be the causes of regional differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号