首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Paleomagnetic characteristics of Carboniferous-Permian and Early Mesozoic geological complexes in Mongolia are studied. The studied rocks are shown to possess a multicomponent magnetization. Lowtemperature overprinting components of normal polarity discovered in nearly all of the studied strata were acquired after main deformation stages of the rocks, apparently in the Cenozoic. High-temperature overprinting components of reversed polarity identified in rocks of an active continental margin (ACM) were acquired when bimodal magma melts moved through ACM volcanic sequences. Late Carboniferous and Early Permian paleomagnetic poles of Mongolia calculated from directions of primary magnetization components are, respectively (Λ = 154.6, Φ = 32.2, A = 7.8) and (Λ = 95, Φ = 71, A = 8.7). Apparently, the territory of Mongolia in the Early Permian was a margin of the Siberian craton and was separated from the Northern China block by a basin extending for no less than 2000 km in the E-W direction. The strike of a marginal-continental volcanic belt was submeridional and a plate subducted under the continent from the east. Late Carboniferous-Permian intraplate magmatic complexes of Mongolia formed at various latitudes from various mantle sources during the northward movement of the Mongolian part of the Siberian continent. The oldest bimodal sequences of the Gobi-Tien Shan zone (318–314 Ma) formed at more southern latitudes (40°–47°–54°N) as compared with the 275-Ma complexes of the Gobi-Altai zone (51°–58°–67°N). Thus, sources of the Carboniferous-Permian intraplate magmatism in Central Asia either occupied a vast mantle region (up to 1000 km in the latitude direction) or moved together with the Asian continent.  相似文献   

2.
The Mt. Stuart Batholith is a composite pluton of Late Cretaceous age that intrudes the crystalline North Cascades terrane of northwestern Washington. Its paleomagnetic direction (D=10.0°, I=45.5°; α95=4.9°) is markedly different from the direction expected for Cretaceous rocks from northwestern Washington (D=330.5°, I=73.0°), which means that the Mt. Stuart Batholith either has moved relative to the North American interior, or has been tilted through a substantial angle, or both, since it acquired its magnetism. Either tilt or translation are possible, geometrically, but translation is more likely, because: (1) local geology apparently does not support tilt in the required direction; (2) it probably is not possible for a panel of rock the size of the Mt. Stuart Batholith to tilt through the necessary angle (ca. 35°) after its deeper parts have cooled sufficiently to retain remanent magnetization; (3) the sense of paleomagnetic discordance found in the Mt. Stuart Batholith (clockwise-rotation of declination, flattened inclination) is identical to that found in nearly every other allochthonous terrane in the western North American Cordillera, including every other Cretaceous batholith studied except the Sierra Nevada.  相似文献   

3.
Terrane analysis and accretion in North-East Asia   总被引:2,自引:0,他引:2  
Abstract A terrane map of North-East Asia at 1:5 000 000 scale has been compiled. The map shows terranes of different types and ages accreted to the North-Asian craton in the Mesozoic–Cenozoic, sub-and superterranes, together with post-amalgamation and post-accretion assemblages. The great Kolyma-Omolon superterrane adjoins the north-east craton margin. It is composed of large angular terranes of continental affinity: craton fragments and fragments of the passive continental margin of Siberia, and island arc, oceanic and turbidite terranes that are unconformably overlain by shallow marine Middle-Upper Jurassic deposits. The superterrane resulted from a long subduction of the Paleo-Pacific oceanic crust beneath the Alazeya arc. Its south-west boundary is defined by the Late Jurassic Uyandina-Yasachnaya marginal volcanic arc which was brought about by subduction of the oceanic crust that separated the superterrane from Siberia. According to paleomagnetic evidence the width of the basin is estimated to be 1500–2000 km. Accretion of the superterrane to Siberia is dated to the late Late Jurassic-Neocomian. The north-east superterrane boundary is defined by the Lyakhov-South Anyui suture which extends across southern Chukotka up to Alaska. Collision of the superterrane with the Chukotka shelf terrane is dated to the middle of the Cretaceous. The Okhotsk-Chukotka belt, composed of Albian-Late Cretaceous undeformed continental volcan-ites, defines the Cretaceous margin of North Asia. Terranes eastward of the belt are mainly of oceanic affinity: island arc upon oceanic crust, accretion wedge and turbidite terranes, as well as cratonic terranes and fragments of magmatic arcs on the continental crust and metamorphic terranes of unclear origin and age. The time of their accretion is constrained by post-accretionary volcanic belts that extend parallel to the Okhotsk-Chukotka belt but are displaced to the east: the Maastrichtian-Miocene Kamchatka-Koryak belt and the Eocene-Quaternary Central Kamchatka belt which mark active margins of the continent of corresponding ages.  相似文献   

4.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

5.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

6.
A paleomagnetic study was carried out on the mid-Cretaceous sedimentary strata in west-central Kyushu Island, southwest Japan, to elucidate the origin of sedimentary basins along the Asian continental margin in the Cretaceous. We collected paleomagnetic samples from a total of 34 sites of the mid-Cretaceous Goshonoura Group, shallow-marine clastic deposits in west-central Kyushu, and characteristic remanent magnetizations were recognized from 18 horizons of red beds. Thermal demagnetization has revealed that the red beds contain three magnetization components, with low (<240°C), intermediate (240-480°C), and high (480-680°C) unblocking temperatures. The low unblocking temperature component is present-field viscous magnetization, and the intermediate one is interpreted as chemical remanent magnetization carried by maghemite that was presumably formed by post-folding, partial oxidation of detrital magnetite. Rock magnetic and petrographic studies suggest that the high unblocking temperature component resides largely in hematite (martite and pigmentary hematite) and partly in maghemite. Because of the positive fold test, this high temperature component can be regarded as primary, detrital remanent magnetization. The tilt-corrected mean direction of the high temperature component is Dec=65°, Inc=63° with α95=5°, which yields a paleomagnetic pole at 39°N, 186°E and A95=8°. A combination of this pole with those of the Late Cretaceous rocks in southwest Japan defines an apparent polar wander path (APWP), which is featured by a cusp between the Late Cretaceous and the Paleogene. A comparison of this APWP with the coeval paleomagnetic pole from northeast Asia suggests an approximately 50° post-Cretaceous clockwise rotation and 18±8° southward drift with respect to northeast Asia. The southward transport of the Cretaceous basin suggests that the proto-Japanese arc originated north of its present position. We propose that the coast-parallel translation of this landmass was caused by dextral motion of strike-slip faults, which previous geodynamic models interpreted to be sinistral through the Mesozoic. The change in strike-slip motion may have resulted from Mesozoic collision and penetration of exotic terranes, such as the Okhotsk microcontinent, with the northeastern part of Asia.  相似文献   

7.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

8.
Since the 1990s, a large number of paleomagneticstudies have been carried out in the North China block(NCB) and Tarim block[1-8], and more and more geo-physicists recently believe that the last collision andconvergence between Siberia and the Mongolia-NorthChina plate happened in the Late Jurassic, which wascontributed to a paleomagnetic study on these areas byZhao and his colleagues[2]. However, we lack paleo-magnetic results obtained directly from the orogenicbelt between Siberia and th…  相似文献   

9.
Magnetic anomalies over the continental shelf off the east coast of India (Orissa) suggest the presence of a highly magnetic rock type magnetized with an intensity of 900 nT in a direction, azimuth(A) = 150° and inclination(I) = +65°. This suggest the occurrence of igneous volcanic rocks which is confirmed from samples found below Tertiary sediments from a few boreholes in this region. The depth of this rock type as estimated from magnetic anomalies varies from approximately 1–2 km near the coast to 4–4.5 km towards the shelf margin. This direction of magnetization is the reverse of the reported direction of magnetization for the Rajmahal Traps of the Cretaceous period (100–110 m.y). A small strip of the body near the continental shelf margin appears, however, to possess normal magnetization suggesting the occurrence of normal and reversed polarities side by side, a characteristic typical for oceanic magnetic anomalies. The reversed polarity of the rocks on the continental shelf suggests that they correspond probably to the MO reversal (115 m.y.) on world magnetostratigraphic scale and provide a paleolatitude of 47°S for the land mass of India which agrees with the palaeoreconstruction of India and Antarctica. In this reconstruction, the Mahanadi Gondwana graben on the Indian subcontinent falls into line with the Lambert Rift in Antarctica, suggesting a probable common ancestry. The volcanic rocks on the continental shelf off the east coast of India might represent a missing link, that is, rocks formed between India and Antarctica at the time of the break-up of Gondwanaland. Satellite magnetic anomalies (MAGSAT) recorded over the Indian shield and interpreted in terms of variations in the Curie point geotherm provide a direction of magnetization which also places this continent close to Antarctica. As such MAGSAT anomalies recorded over eastern Antarctica are found compatible with those recorded over the Indian shield.  相似文献   

10.
It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous–Early Permian 'pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar.  相似文献   

11.
The Mesozoic McCoy Mountains Formation is a 7.3-km-thick deformed clastic sequence exposed in six mountain ranges in southeastern California and southwestern Arizona. Interbedded with Jurassic volcanic rocks at its base, the McCoy Mountains Formation had been assigned a Cretaceous age based upon fossil angiosperm wood found in the upper third of the section. Characteristic natural remanent magnetism (NRM) from 145 oriented samples from 18 sites within the sedimentary terrane yield an in situ mean direction:I = 20.6°, D = 335.1°, α95 = 7.7° (uncorrected for structural tilting). Opaque mineralogy and a failed fold test indicate that the NRM is a chemical remanence acquired post-folding. The paleomagnetic pole position calculated from the in situ mean direction falls adjacent to poles from the Summerville Formation and Canelo Hills Volcanics. We interpret these data to indicate that deformation, mild metamorphism, and resultant magnetization of the McCoy Mountains Formation occurred during Jurassic time. It is suggested that the McCoy Mountains Formation and underlying Jurassic volcanics were deposited adjacent to, and then deformed between, the North American craton and an outlying allochthonous terrane during Jurassic time.  相似文献   

12.
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains,in the northern Qiangtang terrane(NQT),Tibet,China.Data revealed that magnetic minerals in limestone samples from the Zarigen Formation(CP^z)are primarily composed of magnetite,while those in sandstone samples from the Nuoribagaribao Formation(Pnr)are dominated by hematite alone,or hematite and magnetite in combination.Progressive thermal,or alternating field,demagnetization allowed us to isolate a stable high temperature component(HTC)in 127 specimens from 16 sites which successfully passed the conglomerate test,consistent with primary remnance.The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D_s=30.2°,I_s=-40.9°,k_s=269.0,a_(95)=2.3°,N=16,which yields a corresponding paleomagnetic pole at 25.7°N,241.5°E(dp/dm=2.8°/1.7°),and a paleolatitude of 23.4°S.Our results,together with previously reported paleomagnetic data,indicate that:(1)the NQT in Tibet,China,was located at a low latitude in the southern hemisphere,and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian;(2)the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian,and(3)the NQT subsequently moved rapidly northwards,perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean,the northern branch of the Neo-Tethys Ocean,expanded rapidly during this time.  相似文献   

13.
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China. North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid-low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics. its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late-Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late-Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia-NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°—8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors-like collision procedure that produced intensive compression in the eastern part of suturing zone between the NCB and YZB, in which continental crust subducted into the upper mantle in the Late Permian, and then the ultrahigh-pressure rocks extruded in the Late Triassic. Paleomagnetic data also indicate that three major blocks have been together clockwise rotating about 20° relative to present-day rotation axis since the Late Jurassic. It was proposed that Lahsa Block and India subcontinent successively northward subducted and collided with Eurasia or collision between Pacific/Philippines plates and Eurasia might be responsible for this clockwise rotating of Chinese continent.  相似文献   

14.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

15.
The results of the paleomagnetic investigation of the sediments pertaining to the Silasinskaya Formation of the Kiselevka–Manoma terrane within the Sikhote Alin orogenic belt are presented. The ancient prefolding magnetization component is revealed: Decs = 271.7°, Incs = 52.2°, Ks = 13.5, and a 95s = 5.1° (positive fold and reversal tests); and the coordinates of the corresponding paleomagnetic pole for ~103 ± 10 Ma are calculated: Plat = 26.3°, Plong = 70.5°, dp = 4.8°, and dm = 7.0°. As a result of this study, the geodynamical settings and paleolatitudes of the formation of three objects in the northern part of Sikhote Alin orogen are established: (a) the Kiselevskaya Formation of the Kiselevka–Manoma terrane was formed 133 Ma ago at 19° N under the seamount condition on the Izanagi Plate; (b) the Silasinskaya Formation of the Kiselevka–Manoma terrane was formed 103 Ma ago at 35° N under the oceanic island arc conditions; and (c) the Utitskaya Formation of the Zhuravlevsk–Amur terrane was formed 95 Ma ago at 54° N in the active continental margin conditions. It is found that the transform continental margin of Eurasia developed in the time interval from 105 to 65 Ma ago in the regime of a left-lateral submeridional shear from 30° to 60° N. The complete attachment of the studied rocks of the Kiselevka–Manoma terrane to the Eurasia’s margin (to the Zhuravlevsk–Amur terrane) occurred at the boundary of 60–70 Ma. Simultaneously, the sense of the displacement in the submeridional shears changed from left-lateral to right-lateral with the formation of pullapart type basins (Lake Udyl’).  相似文献   

16.
We report paleomagnetic results from oriented drill core samples collected at 10 sites (80 samples) from the Covey Hill and 19 sites (96 samples) from the overlying, fossiliferous Cha?teauguay Formations of the gently dipping Late Cambrian Potsdam Group sandstones exposed in the St. Lawrence Lowlands of Quebec. Stepwise thermal demagnetization analyses ave revealed the presence of two predominant groups of coherent magnetizations C-1 and C-2, after simple correction for bedding tilt. The C-1 group magnetization is a stable direction (D=332°, I=+18°) with unblocking temperatures (TUB) between 550 and 650°C, present in the older Covey Hill Formation; this direction is probably a chemical remanence acquired during the Covey Hill diagenesis and carried predominantly by hematite. The C-2 group magnetization (D=322°, I=+9°) is present at 13 sites of the younger Cha?teauguay Formation; this is probably carried by magnetite and represents a penecontemporaneous, depositional DRM, characterized by TUB spectra 400–550°C. We believe that C-2 is relatively younger than C-1 based on a combination of arguments such as the presence of opposite polarities, internal consistency, similarity and common occurrence of C-1 and C-2 respectively in the Covey Hill and Cha?teauguay members. The corresponding paleomagnetic poles C-1 (46°N, 149°E; dp, dm=3°, 5°) and C-2 (37°N, 156°E; dp, dm=2°, 5°) are not significantly different from most of the other Late Cambrian (Dresbachian-Franconian) poles derived from sediments exposed in the southern region (Texas) of the North American craton which are also believed to have been deposited during Croixian Sauk sea transgression similar to the Potsdam sandstones. Although adequate faunal control is lacking (in particular for the Covey Hill Formation), this comparison with the Cratonic poles suggests a Late Cambrian age to the Potsdam poles. The agreement between the results also gives the evidence for internal consistency of cratonic poles at least for Late Cambrian.The incoherent C-3 group remanence (D=250°, I=?15°) is commonly present at 7 sites in both the formations; this may not correspond to a reliable paleomagnetic signal. The other remanence C-4 (D=180°, I=+10°) is found only at 3 sites located in the uppermost stratigraphic levels of the Cha?teauguay Formation; the corresponding paleomagnetic pole (40°N, 107°E) does not differ significantly from the Ordovician and some Late Cambrian poles. The present data are insufficient to resolve a problem in apparent polar wander for Middle and Late Cambrian time posed by the existence of high-latitude poles for some strata of Middle Cambrian age and low-latitude poles for some strata of Late Cambrian age.  相似文献   

17.
We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (~1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferous.  相似文献   

18.
用热退磁辅以交变退磁方法对采自塔里木盆地阿克苏地区四石厂剖面47个采样点518块标本进行了逐步磁清洗和测试。由本征剩磁方向统计得到塔里木地台晚古生代的古地磁极位置(晚泥盆世φ=10.5°S、λ=151.2°E;晚石炭世φ=52.2°N、λ=179.5°E;早二叠世φ=56.5°N,λ=190.1°E)。古地磁结果表明:塔里木地台在晚古生代是北方大陆的块体之一。从晚石炭世至早二叠世塔里木地台已和北方的哈萨克斯坦板块、西伯利亚地台、俄罗斯地台等连成一片,并且从中生代以来它们之间的相对位置没有发生过大规模的变动  相似文献   

19.
塔里木地块侏罗、白垩纪的古地磁   总被引:5,自引:0,他引:5       下载免费PDF全文
本文对塔里木地块西北缘库车、拜城一带中新生代剖面进行了古地磁研究。库车与拜城两剖面具有不同方向产状,经产状校正之后,均为同一方向,表明磁性是在第三系褶皱之前获得的。热退磁结果表明500℃之前为现代地磁场方向,解阻温度为675℃,说明磁性载体为赤铁矿。 古地磁结果表明,塔里木地块在晚侏罗—晚白垩世之间没有经历大规模的构造运动。有可能自晚白垩世之后相对西伯利亚地块向北东方向移动过  相似文献   

20.
为进一步确定拉萨地块白垩纪-古近纪的古地理位置,我们对青藏高原拉萨地块措勤地区林子宗火山岩18个采点进行了古地磁研究.结果表明高温(高场)特征剩磁分量主要为亚铁磁性的磁铁矿所携带,特征剩磁分量在95%置信水平下通过了褶皱检验. 倾斜校正后采点平均的特征剩磁方向为D/I=16.2°/17.7°, α95=5.6°,对应古地磁极位置为63.1°N,224.6°E,A95=5.1°. 另一方面,Ar-Ar年代学结果表明采样剖面的林子宗火山岩形成年龄为~99-93 Ma, 与拉萨地块林周盆地的林子宗群火山岩的形成年龄存在较大差异.由此我们得到晚白垩世拉萨地块中部措勤地区的古纬度为8.5°±6.9°N,与林周盆地古近纪林子宗群典中组和年波组所揭示出的古纬度相当,进一步表明亚洲大陆最南缘的拉萨地块在晚白垩世-古近世期间位于北半球~10°N的低纬度地区.结合最新的特提斯海相地层古地磁结果,晚白垩世-古近世拉萨地块的古地理位置限定了印度与欧亚大陆的初始碰撞时间不晚于60.5 Ma;~93 Ma以来,拉萨地块和单一刚性欧亚大陆之间存在~1900 km的构造缩短.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号