首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
北半球绕极涡的变异及其与我国气候异常的关系   总被引:22,自引:1,他引:22  
顾思南  杨修群 《气象科学》2006,26(2):135-142
本文利用近50 a大气再分析资料和中国站点观测资料,通过定义绕极涡的总体面积指数,分析了北半球绕极涡的变异特征及其与我国气候异常的关系,通过考虑绕极涡的局地变异和利用SVD分析方法揭示了绕极涡的局地变异与我国气候变异的关系。结果表明:北半球绕极涡的总体面积变异表现为一致性的扩张或收缩变化特征,近50 a来其总体面积具有收缩的趋势,这与全球增暖尤其是极区增暖有密切关系;叠加在这种趋势之上的既有年际变化又有年代际变化,主要周期大约是3~5 a和8~12 a。因此,研究绕极涡与我国气候的相关时分时间尺度来考虑更合理。北半球绕极涡的总体面积变异与我国气候异常的关系主要体现在年代际时间尺度上,当北半球绕极涡总体一致性收缩时,冬季我国大部分地区的气温都会随之变高,而降水偏多;夏季东北、华北、西南和华南地区气温偏高,降水偏少,而江淮流域气温偏低,降水偏多。反之亦然。北半球绕极涡的局地变异主要体现在西风带长波振幅的变异上,而其与我国气候异常的联系主要表现在年际时间尺度上,当东亚大槽减弱时,冬季我国中、东部大部分地区气温偏高,降水偏多;夏季江淮流域和四川盆地气温偏低,其它地区气温偏高,降水变化不明显。反之亦然。  相似文献   

2.
PRUDENCE simulations of the climate in Central Europe are analysed with respect to mean temperature, mean precipitation and three monthly mean geostrophic circulation indices. The three global models show important circulation biases in the control climate, in particular in the strength of the west-circulations in winter and summer. The nine regional models inherit much of the circulation biases from their host model, especially in winter. In summer, the regional models show a larger spread in circulation statistics, depending on nesting procedures and other model characteristics. Simulated circulation biases appear to have a significant inluence on simulated temperature and precipitation. The PRUDENCE ensemble appears to be biased towards warmer and wetter than observed circulations in winter, and towards warmer and dryer circulations in summer. A2-scenario simulations show important circulation changes, which have a significant impact on changes in the distributions of monthly mean temperature and precipitation. It is likely that interactions between land–surface processes and atmospheric circulation play an important role in the simulated changes in the summer climate in Central Europe.  相似文献   

3.
一个适用于描述中国大陆冬季气温变化的东亚冬季风指数   总被引:16,自引:0,他引:16  
朱艳峰 《气象学报》2008,66(5):781-788
利用1951年1月-2007年2月的NCEP V1格点资料和中国台站观测资料,定义了一个冬季风环流指数(IEAWM),并分析其与中国冬季气温和东亚大气环流变化的联系.结果表明该指数能够很好地反映东亚冬季风系统各成员的变化,兼顾北方和南方的环流状况和东西部热力差异的影响,改进了原有冬季风指数大多针对单一的冬季风环流成员及对中国冬季气温变化反映能力的不足,能够很好地反映中国冬季平均气温的异常变化.分析表明,当该指数为正值时东亚冬季风偏强,对应着地面西伯利亚高压和高空东亚大槽均偏强,东亚地区对流层中层的高-低纬度之间的纬向风经向切变加强,有利于中高纬度冷空气向南侵入,导致中国大陆地区气温偏低,反之亦然.IEAWM的年代际变化表明东亚冬季风在1985年之前偏强,1985年之后明显偏弱,这与1985年之后中国冬季变暖是一致的.  相似文献   

4.
东亚冬季风的年代际变化及其与全球气候变化的可能联系   总被引:15,自引:2,他引:13  
对近年来中外关于东亚冬季风(EAWM)年代际变化问题研究进展做了回顾和评述,主要包括以下3个方面内容:(1)东亚冬季风明显受到全球气候变化的影响,从20世纪50年代开始,中国冬季气温经历了一次冷期(从20世纪50年代延续到80年代初中期),一次暖期(从20世纪80年代初中后期延续到21世纪初)和近10-15年(约从1998年开始)出现的气候变暖趋缓期(也称气候变暖停顿期)。(2)东亚冬季风主要表现出强-弱-强3阶段的特征,即从1950年到1986/1987年,明显偏强;从1986/1987年冬季开始,东亚冬季风减弱;约2005年之后,东亚冬季风开始由弱转强。与东亚冬季风的年代际变化特征相对应,东亚冬季大气环流以及中国冬季气温和寒潮都表现出一致的年代际变化。(3)东亚冬季风的年代际变化与大气环流和太平洋海表温度(SST)的区域模态变化密切相关。当北半球环状模/北极涛动(NAM/AO)和太平洋年代际振荡(PDO)处于负(正)位相,东亚冬季风偏强(弱),中国冬季气温偏低(高)。此外,北大西洋年代尺度振荡(AMO)对东亚冬季风也有重要影响,在AMO负位相时,对应东亚冷期(强冬季风),正位相对应暖期(弱冬季风)。因而海洋的年代际变化是造成东亚冬季风气候脉动的主要自然原因,而全球气候变暖对东亚冬季风强度的减弱也有明显影响。  相似文献   

5.
Using the NCEP/NCAR reanalysis data (Version 1.0) and the observation data of China from January 1951 to February 2007, a new index of East Asian winter monsoon circulation (I EAWM) was defined based on the comparison of previous different winter monsoon indices and circulation factors influencing the winter climate over China. Its relationships with winter temperature over China and large-scale circulation were analyzed. Results show that IEAWM can successfully describe the variation of China's mainland winter temperature and the East Asian winter monsoon (EAWM) system. This index reflects the integrated effect of the circulations over high and low latitudes and the thermal difference between the continent and the ocean. While in the previous studies, most monsoon indices only describe the single monsoon member. The IEAWM is a good indicator of the intensity of the EAWM. Positive values of/EAWM correspond to the strong EAWM, the stronger Siberian high and East Asian trough than normal , and the strengthening of the meridional shear of 500-hPa zonal wind between high and low latitudes over East Asia, and therefore, the southward cold advection becomes stronger and leads to the decrease in surface temperature over China; and vice versa. The IEAWM inter decadal change is obviously positive before the mid-1980s, but negative since the mid-1980s, in good agreement with the fact of the winter warming in China after 1985.  相似文献   

6.
江苏省冬季气温、降水年代际异常及相关分析   总被引:6,自引:4,他引:2  
傅云燕  杨修群  沈伟 《气象科学》2013,33(2):178-183
利用NCEP/NCAR再分析资料和江苏省冬季气温、降水资料,运用带通滤波、经验正交分解(EOF)和相关分析等方法,分析了江苏省冬季气候年代际异常及同期气温与降水的相关特征.结果表明:江苏省冬季气候的年代际变化具有很好的空间一致性,表现为全省整体偏暖(偏冷)和偏涝(偏旱)的趋势;冬季气候存在明显的年代际突变,时间在1980s中期前后,平均气温从偏冷时期向偏暖时期转换,降水由偏少期向偏多时期转换.通过冬季同期降水和气温的相关分析发现,降水和气温具有一定的正相关性,而他们的年代际分量的正相关性更为显著,这与冬季大气环流场和海温场的年代际变化有密切的关系.  相似文献   

7.
In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Ni?o/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850?hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N?C30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E?C180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere?Cocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.  相似文献   

8.
太平洋年代际振荡与中国气候变率的联系   总被引:77,自引:6,他引:77  
朱益民  杨修群 《气象学报》2003,61(6):641-654
利用 195 1~ 1998年的太平洋年代际振荡 (PDO)指数、全球海洋和大气分析资料及中国降水和气温站点观测资料 ,分析了太平洋年代际振荡在海洋中的特征及其与东亚大气环流和中国气候变率的联系。结果表明 ,PDO与东亚大气环流及中国气候年代际变化关系密切。对应于PDO暖位相期 (即中纬度北太平洋异常冷、热带中东太平洋异常暖 ) ,冬季 ,阿留申低压增强 ,蒙古高压也增强 (但东西伯利亚高压减弱 ) ,中国东北、华北、江淮以及长江流域大部分地区降水偏少 ,东北、华北和西北地区气温异常显著偏高 ,而西南和华南地区气温偏低 ;夏季 ,海平面气压在北太平洋的负异常较弱 ,而在东亚大陆的正异常较强 ,东亚夏季风偏弱 ,西太平洋副热带高压偏南 ,热带太平洋信风减弱 ,赤道西风增强 ,此时华北地区降水异常偏少而长江中下游、华南南部、东北和西北地区降水异常偏多 ,东北、华北及华南地区气温异常偏高 ,而西北、西南和长江中下游地区气温异常偏低。对应于PDO冷位相期 ,上述形势相反。结果还表明 ,处于不同阶段的ENSO事件对中国夏季气候异常的影响明显受到PDO的调制。在PDO冷位相期 ,当ENSO事件处于发展阶段 ,华南地区夏季降水偏少 ,东北地区夏季多低温 ,在其衰减阶段 ,华北地区和长江流域降水偏多 ,淮河地区降水偏少 ;  相似文献   

9.
天津盛夏降水趋势与初夏华北高压的统计分析   总被引:3,自引:1,他引:3  
根据初夏(6月)的天气气候演变,预测盛夏(7~8月)的短期气候趋势,一直是急需解决的难题。文章揭示了自1958年以来天津盛夏降水趋势与初夏时节临近地区上空的环流特征之间的统计关系。结果表明,初夏华北高压强时盛夏天津降水偏少,反之盛夏天津降水偏多,不仅逐年的对应关系显著,而且变化趋势相反,转折时期也一致。初步解释了20世纪70年代以前天津(华北)盛夏多雨和80年代至今天津(华北)少雨的物理原因。以此为主要根据建立了初夏对于盛夏天津降水的短期气候预测方法,1998~2003年连续6年预报正确。  相似文献   

10.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

11.
This paper introduces the experimental designs and outputs of the Diagnostic,Evaluation and Characterization of Klima(DECK),historical,Scenario Model Intercomparison Project(MIP),and Paleoclimate MIP(PMIP)experiments from the Nanjing University of Information Science and Technology Earth System Model version 3(NESM3).Results show that NESM3 reasonably simulates the modern climate and the major internal modes of climate variability.In the Scenario MIP experiment,changes in the projected surface air temperature(SAT)show robust“Northern Hemisphere(NH)warmer than Southern Hemisphere(SH)”and“land warmer than ocean”patterns,as well as an El Ni?o-like warming over the tropical Pacific.Changes in the projected precipitation exhibit“NH wetter than SH”and“eastern hemisphere gets wetter and western hemisphere gets drier”patterns over the tropics.These precipitation patterns are driven by circulation changes owing to the inhomogeneous warming patterns.Two PMIP experiments show enlarged seasonal cycles of SAT and precipitation over the NH due to the seasonal redistribution of solar radiation.Changes in the climatological mean SAT,precipitation,and ENSO amplitudes are consistent with the results from PMIP4 models.The NESM3 outputs are available on the Earth System Grid Federation nodes for data users.  相似文献   

12.
Wang  Ya  Huang  Gang  Hu  Kaiming 《Climate Dynamics》2020,55(9-10):2835-2847

The surface air temperature (SAT) exhibits pronounced warming over West Antarctica in recent decades, especially in austral spring and winter. Using a 30-member ensemble of simulations by Community Earth System Model (CESM), two reanalysis datasets, and observed station data, this study investigates the relative contributions of internally generated low-frequency climate variability and externally forced climate change to the austral winter SAT trend in Antarctica. Although these simulations share the same external forcing, the SAT trends during 1979–2005 show large diversity among the individual members in the CESM ensemble simulations, suggesting that internally generated variability contributes a considerable part to the multidecadal SAT change in Antarctica. Quantitatively, the total forced contribution to the SAT (1979–2005) change is about 0.53 k/27 yr, and the internal variability can be strong enough to double or cancel the externally forced warming trend. A method called “dynamical adjustment” is utilized to further divide the forced response. We find both the forced thermodynamically-induced and the forced dynamically-induced SAT trends are positive over all the regions in Antarctica, with the regional mean values of 0.20 k /27 yr and 0.33 k/27 yr, respectively. The diversity of SAT trends among the simulations is closely linked to a Southern hemisphere Annular Mode (SAM)-like atmospheric circulation multidecadal change in the Southern Hemisphere. When there exists a positive–negative seesaw of pressure trend between Antarctica and the mid-latitudes, the SAT trend is positive over most of Antarctica but negative over the Antarctic Peninsula, and vice versa. The SAM-like atmospheric circulation multidecadal change mainly arises from atmospheric internal variability rather than remote tropical Sea Surface Temperature (SST).

  相似文献   

13.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

14.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

15.
利用1979—2019年全国160站逐月降水资料、国家气候中心的西太平洋副热带高压特征指数逐月资料、英国Hadley中心逐月海表面温度资料以及NCEP/NCAR逐月再分析资料,结合小波分析、相关分析、信息流以及合成分析方法,分析了广西前汛期降水的变化特征及其与东南太平洋海温变化的因果联系。结果表明:近40 a来广西前汛期降水呈弱增多趋势,在1980年代末至21世纪初存在显著的3~5 a周期。在1980年代至1990年代初为少雨期,而在20世纪末至21世纪初期转为多雨期。东南太平洋是海温影响广西前汛期降水的关键区,同年春季以及同期该区域海温变化是造成广西前汛期降水变化的原因之一,海温升高(降低)能够部分导致降水的减少(增多)。同年春季海温偏冷年,关键区西侧为对流抑制,南太平洋出现异常反气旋环流响应,通过垂直环流引起澳大利亚西北侧上升运动异常,减弱了局地Hadley环流。该异常通过大气桥一方面使得副高增强增大,位置偏西偏南,有利于副高西侧的西南气流向广西输送水汽;另一方面使得广西地区上空局地Hadley下沉支减弱,受异常上升运动控制,对流增强,导致降水正异常。反之亦然。   相似文献   

16.
This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate change. Winter temperature in China has experienced three stages of variations from the beginning of the 1950s: a cold period (from the beginning of the 1950s to the early or mid 1980s), a warm period (from the early or mid 1980s to the early 2000s), and a hiatus period in recent 10 years (starting from 1998). The strength of the EAWM has also varied in three stages: a stronger winter monsoon period (1950 to 1986/87), a weaker period (1986/87 to 2004/05), and a strengthening period (from 2005). (2) Corresponding to the interdecadal variations of the EAWM, the East Asian atmospheric circulation, winter temperature of China, and the occurrence of cold waves over China have all exhibited coherent interdecadal variability. The upper-level zonal circulation was stronger, the mid-tropospheric trough over East Asia was deeper with stronger downdrafts behind the trough, and the Siberian high was stronger during the cold period than during the warm period. (3) The interdecadal variations of the EAWM seem closely related to major modes of variability in the atmospheric circulation and the Pacific sea surface temperature. When the Northern Hemisphere annular mode/Arctic Oscillation and the Pacific decadal oscillation were in negative (positive) phase, the EAWM was stronger (weaker), leading to colder (warmer) temperatures in China. In addition, the negative (positive) phase of the Atlantic multi decadal oscillation coincided with relatively cold (warm) temperatures and stronger (weaker) EAWMs. It is thus inferred that the interdecadal variations in the ocean may be one of the most important natural factors influencing long-term variability in the EAWM, although global warming may have also played a significant role in weakening the EAWM.  相似文献   

17.
This study examines the sensitivity of a mid-size basin’s temperature and precipitation response to different global and regional climate circulation patterns. The implication of the North Atlantic Oscillation (NAO), El Ni?o Southern Oscillation (ENSO), Indian Monsoon and ten other teleconnection patterns of the Northern Hemisphere are investigated. A methodology to generate a basin-scale, long-term monthly surface temperature and precipitation time series has been established using different statistical tests. The Litani River Basin is the focus of this study. It is located in Lebanon, east of the Mediterranean Basin, which is known to have diverse geophysical and environmental characteristics. It was selected to explore the influence of the diverse physical and topographical features on its hydroclimatological response to global and regional climate patterns. We also examine the opportunity of conducting related studies in areas with limited long-term measured climate and/or hydrological data. Litani's monthly precipitation and temperature data have been collected and statistically extrapolated using remotely sensed data products from satellites and as well as in situ gauges. Correlations between 13 different teleconnection indices and the basin’s precipitation and temperature series are investigated. The study shows that some of the annual and seasonal temperature and precipitation variance can be partially associated with many atmospheric circulation patterns. This would give the opportunity to relate the natural climate variability with the watershed’s hydroclimatology performance and thus differentiate it from other anthropogenic induced climate change outcomes.  相似文献   

18.
利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。  相似文献   

19.
南极海冰的变化和全球大气环流关系密切。南极各区海冰的不同变化, 对南北半球大气环流有着不同的影响。文中基于对南极海冰变化的客观分区, 定义了南极海冰北界涛动指数 (ASEOI), 并结合中央气象台提供的南方涛动指数、北半球500 hPa和100 hPa高度场资料以及我国160站降水、温度资料, 利用诊断分析方法, 对ASEOI与我国夏季天气气候的关系进行了研究。研究表明:ASEOI对我国长江中下游降水及全国大部分地区温度具有指示意义。若前一年10月ASEOI偏低, 则当年7月我国长江中下游降水偏多, 引发洪涝灾害的可能性很大; 温度场上, 我国北方气温偏高, 南方气温偏低, 而高温往往伴随着少雨, 这无疑会加剧华北本就严重的旱情。  相似文献   

20.
The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observational composite analyses reveal that the warm phase AMO is linked to warmer winters in East China, with enhanced precipitation in the north of this region and reduced precipitation in the south, on multidecadal time scales. The pattern is reversed during the cold phase AMO. Whether the AMO acts as a forcing of the multidecadal winter climate of East China is explored by investigating the atmospheric response to warm AMO SST anomalies in a large ensemble of atmospheric general circulation model (AGCM) experiments. The results from three AGCMs are consistent and suggest that the AMO warmth favors warmer winters in East China. This influence is realized through inducing negative surface air pressure anomalies in the hemispheric-wide domain extending from the midlatitude North Atlantic to midlatitude Eurasia. These negative surface anomalies favor the weakening of the Mongolian Cold High, and thus induce a weaker East Asian Winter Monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号