首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Given the recent historical disastrous tsunamis and the knowledge that the Arabian Gulf (AG) is tectonically active, this study aimed to evaluate tsunami hazards in Kuwait from both submarine earthquakes and subaerial landslides. Despite the low or unknown tsunami risks that impose potential threats to the coastal area’s infrastructures and population of Kuwait, such an investigation is important to sustain the economy and safety of life. This study focused on tsunamis generated by submarine earthquakes with earthquake magnitudes (M w ) of 8.3–9.0 along the Makran Subduction Zone (MSZ) and subaerial landslides with volumes of 0.75–2.0 km3 from six sources along the Iranian coast inside the AG and one source at the Gulf entrance in Oman. The level of tsunami hazards associated with these tsunamigenic sources was evaluated using numerical modeling. Tsunami model was applied to conduct a numerical tsunami simulation and predict tsunami propagation. For landslide sources, a two-layer model was proposed to solve nonlinear longwave equations within two interfacing layers with appropriate kinematic and dynamic boundary conditions. Threat level maps along the coasts of the AG and Kuwait were developed to illustrate the impacts of potential tsunamis triggered by submarine earthquakes of different scales and subaerial landslides at different sources. GEBCO 30 arc-second grid data and others were used as bathymetry and topography data for numerical modeling. Earthquakes of M w 8.3 and M w 8.6 along the MSZ had low and considerable impacts, respectively, at the Gulf entrance, but negligible impacts on Kuwait. An earthquake of M w 9.0 had a remarkable impact for the entire Gulf region and generated a maximum tsunami amplitude of up to 0.5 m along the Kuwaiti coastline 12 h after the earthquake. In the case of landslides inside the AG, the majority impact occurred locally near the sources. The landslide source opposite to Kuwait Bay generated the maximum tsunami amplitudes reaching 0.3 m inside Kuwait Bay and 1.8 m along the southern coasts of Kuwait.

  相似文献   

2.
Xu  Zhiguo  Sun  Lining  Rahman  Mohd Nashriq Abd  Liang  Shanshan  Shi  Jianyu  Li  Hongwei 《Natural Hazards》2022,111(3):2703-2719

A major left-lateral strike-slip Mw7.7 earthquake occurred in the vicinity of the Caribbean Sea on January 28, 2020. As a result, a small-scale tsunami was generated. The properties of the seismogenic source were described using observational data gathered for the earthquake and tsunami, as well as information on the regional tectonic setting. The tsunami was simulated with the COMCOT model and Okada’s dislocation model from finite fault solutions for MW7.7 Caribbean Sea earthquakes published by the United States Geological Survey. The simulation results were compared to tide gauge records to validate whether the seafloor’s vertical displacement generated by the strike-slip fault caused a small-scale tsunami. We conducted a spectral analysis of the tsunami to better understand the characteristics of tsunami records. The tsunami simulation results showed that the co-seismic vertical displacement caused by a strike-slip MW7.7 earthquake could have contributed to the small-scale tsunami, but the anomalously large high-frequency tsunami waves recorded by the George Town tide gauge 11 min after the earthquake were unrelated to the earthquake-generated tsunami. According to the spectrum analysis, the predominant period of noticeable high-frequency tsunami waves recorded by the George Town tide gauge occurred only two minutes after the earthquake. This indicates that the source of the small-scale tsunami was close to the George Town station and the possible tsunami source was 150 km away from George Town station. These facts suggest that a submarine landslide was caused by the strike-slip earthquake. The comprehensive analysis showed that the small-scale tsunami was not caused solely by co-seismic seafloor deformation from the strike-slip event but that an earthquake-triggered submarine landslide was the primary cause. Therefore, the combined impact of two sources led to the small-scale tsunami.

  相似文献   

3.
4.
A number of examples are presented to substantiate that submarine landslides have occurred along most continental margins and along several volcano flanks. Their properties of importance for tsunami generation (i.e. physical dimensions, acceleration, maximum velocity, mass discharge, and travel distance) can all gain extreme values compared to their subaerial counterparts. Hence, landslide tsunamis may also be extreme and have regional impact. Landslide tsunami characteristics are discussed explaining how they may exceed tsunamis induced by megathrust earthquakes, hence representing a significant risk even though they occur more infrequently. In fact, submarine landslides may cause potentially extreme tsunami run-up heights, which may have consequences for the design of critical infrastructure often based on unjustifiably long return periods. Giant submarine landslides are rare and related to climate changes or glacial cycles, indicating that giant submarine landslide tsunami hazard is in most regions negligible compared to earthquake tsunami hazard. Large-scale debris flows surrounding active volcanoes or submarine landslides in river deltas may be more frequent. Giant volcano flank collapses at the Canary and Hawaii Islands developed in the early stages of the history of the volcanoes, and the tsunamigenic potential of these collapses is disputed. Estimations of recurrence intervals, hazard, and uncertainties with today’s methods are discussed. It is concluded that insufficient sampling and changing conditions for landslide release are major obstacles in transporting a Probabilistic Tsunami Hazard Assessment (PTHA) approach from earthquake to landslide tsunamis and that the more robust Scenario-Based Tsunami Hazard Assessment (SBTHA) approach will still be most efficient to use. Finally, the needs for data acquisition and analyses, laboratory experiments, and more sophisticated numerical modelling for improved understanding and hazard assessment of landslide tsunamis are elaborated.  相似文献   

5.
Indian Ocean subduction zone is one of the most active plate margins of the globe as evident from its vast record of great magnitude earthquake and tsunami events. We use Bouguer admittance (Morlet isostatic response function) in Sumatra-Java subduction zones comprising both the subduction and over-riding plates to determine the lithospheric mechanical strength variations. We determine effective elastic thickness (T e ) for five oceanic windows (size 990 × 990 km2) by analyzing the admittance using Bouguer gravity and bathymetry data. The results show bimodal T e values < 20 km for Sumatra and 20−40 km for Java. The lower bimodal values obtained for Sumatra appears to correlate well with the zones of historical seismicity. This is in sharp contrast with Java subduction zone, which shows higher T e values (20–40 km) and apparently associated with low magnitude earthquakes. We suggest a strong and wide interseismic coupling for Sumatra between the subducting and over-riding plates, and deeper mantle contributing to low strength, shallow focus — high magnitude seismicity and vice versa for Java, leading to their seismogenic zonation.  相似文献   

6.
Both seismic and tsunami hazards design criteria are essential input to the rehabilitation and long-term development of city of Banda Aceh Post Sumatra 2004 (M w=9.3) disaster. A case study to develop design criteria for future disaster mitigation of the area is presented. The pilot study consists of probabilistic seismic and tsunami hazard analysis. Results of the probabilistic seismic hazard analysis indicates that peak ground acceleration at baserock for 10 and 2% probability of exceedance in 50 years is 0.3 and 0.55 g, respectively. The analysis also provides spectral values at short (T=0.2 s) and long period (T=1.0 s) motions. Some non-linear time-domain earthquake response analyses for soft, medium, and hard site-class were conducted to recommend design response spectra for each site-class. In addition, tsunami inundation maps generated from probabilistic tsunami hazard analysis were developed through tsunami wave propagation analysis and run-up numerical modeling associated with its probability of tsunamigenic earthquake source potential. Both the seismic and tsunami hazard curve and design criteria are recommended as contribution of this study for design criteria, as part of the disaster mitigation effort in the development process of the city. The methodology developed herein could be applied to other seismic and tsunami disaster potential areas.  相似文献   

7.
The tsunami of 26th December 2004 severely affected Yemen’s Socotra Island with a death at a distance of 4,600 km from the epicenter of the Magnitude 9.0 earthquake. Yemen allowed a detailed assessment of the far-field impact of a tsunami in the main propagation direction. The UNESCO mission surveyed 12 impacted towns on the north and south shores covering from the east to the west tip of Socotra. The international team members were on the ground in Yemen from 11 to 19 October 2006. The team measured tsunami run-up heights and inundation distances based on the location of watermarks on buildings and eyewitness accounts. Maximum run-up heights were typically on the order of 2–6 m. Each measurement was located by means of global positioning systems (GPS) and photographed. Numerous eyewitness interviews were recorded on video. The tsunami impact on Socotra is compared with other locations along the shores of the Indian Ocean.  相似文献   

8.
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources.To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.  相似文献   

9.
Tokutaro Hatori 《GeoJournal》1996,38(3):313-319
The regional characteristics of tsunami magnitudes in the SE Asia region are discussed in relation to earthquake magnitudes during the period from 1960 to 1994. Tsunami magnitudes on the Imamura-Iida scale are investigated by the author's method (Hatori 1979, 1986) using the data of inundation heights near the source area and tide-gauge records observed in Japan. The magnitude values of the Taiwan tsunamis showed relatively to be small. On the contrary, the magnitudes of tsunamis in the vicinities of the Philippines and Indonesia exceed more than 1–2 grade (tsunami heights: 2–5 times) compared to earthquakes with similar size on the circum-Pacific zone. The relation between tsunami magnitude, m, and earthquake magnitude, M s, is expressed as m = 2.66 M s– 17.5 for these regions. For example, the magnitudes for the 1976 Mindanao tsunami (M s= 7.8, 3702 deaths) and the 1992 Flores tsunami (M s= 7.5, 1713 deaths) were determined to be m = 3 and m = 2.5, respectively. The focal depth of tsunamigenic earthquakes is shallower thand< 36 km, and the detectively of tsunamis is small for deep earthquakes being d > 40 km. For future tsunamis, it is indispensable to take precautions against shallow earthquakes having the magnitudes M s> 6.5.  相似文献   

10.
An earthquake of Mw 9.0 struck the Pacific coast in northeast Japan on March 11, 2011 and was followed by a hugely damaging tsunami along 500 km of the Japanese coastline. An inland aftershock of M. 7.0 occurred on April 11; during which, surface fault ruptures appeared on land. A large variety of landslide disasters resulted from these earthquakes in various parts of northeastern Honshu, Japan. The full extent of the landslides is still being determined. This brief report introduces some of the landslide phenomena so far investigated by the Japanese Landslide Society. These are (1) failure of a water reservoir embankment dam in Sukagawa, Fukushima prefecture, (2) landslides and surface seismic fault rupture from the April 11 aftershock in Iwaki, Fukushima, (3) a concentration of surface failures at Matsushima Bay in Miyagi prefecture, and (4) small landslides on modified slopes in residential areas around Sendai city.  相似文献   

11.
To explore the local tsunami hazard from the Cascadia subduction zone we (1) evaluate geologically reasonable variability of the earthquake rupture process, (2) specify 25 deterministic earthquake sources, and (3) use resulting vertical coseismic deformations for simulation of tsunami inundation at Cannon Beach, Oregon. Maximum runup was 9–30 m (NAVD88) from earthquakes with slip of ~8–38 m and M w ~8.3–9.4. Minimum subduction zone slip consistent with three tsunami deposits was 14–15 m. By assigning variable weights to the source scenarios using a logic tree, we derived percentile inundation lines that express the confidence level (percentage) that a Cascadia tsunami will not exceed the line. Ninety-nine percent of Cascadia tsunami variation is covered by runup ≤30 m and 90% ≤16 m with a “preferred” (highest weight) value of ~10 m. A hypothetical maximum-considered distant tsunami had runup of ~11 m, while the historical maximum was ~6.5 m.  相似文献   

12.
Butler  Rhett 《Natural Hazards》2019,96(2):961-973

High-frequency (5–20 Hz) seismic signals precursory to and embedded within the June 17, 2017 ML?=?4 earthquake–landslide event are analyzed. This event in western Greenland generated a tsunami in Karrat fjord inundating Nuugaatsiaq village 32 km distant. Spectrogram and wavelet analyses of seismic data from the Greenland Ice Sheet Monitoring Network (GLISN) corroborate observations of seismic precursors at Nuugaatsiaq reported by Poli (Geophys Res Lett 44:8832–8836, 2017) and Caplan-Auerbach (in: AGU fall meeting abstracts, 2017) and reveal additional high-frequency arrivals being generated after the apparent initiation of fault rupture. New observations of seismic precursors 181 km from the Event at Upernavik, Greenland are correlated with those seen at Nuugaatsiaq. Wavelet analysis presents?>?100 significant energy peaks accelerating up to and into the earthquake–landslide event. The precursor events show a distinct, power law distribution, characterized by b values of ~?2.4. Results are compared and contrasted with small precursors observed in the studies of a natural chalk cliff landslide at Mesnil-Val, Haute Normandie, France. The earthquake–landslide appears to have been initiated by seismic precursors located at the fault scarp, leading to a small seismic foreshock and small landslide initiation, followed by a larger earthquake at the fault scarp, precipitating the primary landslide into the Karrat Fjord, which caused the subsequent tsunami.

  相似文献   

13.
We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (<1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (<1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard.  相似文献   

14.
The forms and location patterns of geologic hazards induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in1950 through 2008 have been investigated statistically, using a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. The database includes 689 cases of macroseismic effects from MS = 4.1–8.1 events at 398 sites. Statistical analysis of the data has revealed regional relationships between the magnitude of an earthquake and the maximum distance of its environmental effects (soil liquefaction and subsidence, secondary surface rupturing, and slope instability) to the epicenter and to the causative fault. Thus estimated limit distances to the fault for the MS = 8.1 largest event are 40 km for soil subsidence (sinkholes), 80 km for surface rupture, 100 km for slope instability (landslides etc.), and 130 km for soil liquefaction. These distances are 3.5–5.6 times as short as those to the epicenter, which are 150, 450, 350, and 450 km, respectively. Analysis of geohazard locations relative to nearest faults in southern East Siberia shows the distances to be within 2 km for sinkholes (60% within 1.5 km), 4.5 km for landslides (90% within 1.5 km), 8 km for liquefaction (69% within 1 km), and 35.5 km for surface rupture (86% within 2 km). The frequency of hazardous effects decreases exponentially away from both seismogenic and nearest faults. Cases of soil liquefaction and subsidence are analyzed in more detail in relation to rupture patterns. Equations have been suggested to relate the maximum sizes of secondary structures (sinkholes, dikes, etc.) with the earthquake magnitude and shaking intensity at the site. As a result, a predictive model has been created for locations of geohazard associated with reactivation of seismogenic faults, assuming an arbitrary fault pattern. The obtained results make basis for modeling the distribution of geohazards for the purposes of prediction and estimation of earthquake parameters from secondary deformation.  相似文献   

15.
The distinctive bathymetric feature exists in the Suruga Bay, Japan. It has been called as Senoumi (Stone flower sea) from old times. Senoumi is a 30?km wide and 20?km long concave feature. Its origin has not been explained yet; however, the feature might be a combined consequence of intensive tectonic activity in the plate border, landslides, and a submarine flow coming from the Oi River. If the Senoumi was caused by a landslide, the latter would be larger than any on-land landslide in Japan. The downshelf “exit” from this feature is much narrower than its central part. This is not usual shape of landslides, but it is similar to the liquefied landslides such as those in quick clays which mobilize great strength reduction after failure. To study Senoumi as a landslide, the shear behaviors of the following three soil samples were investigated by the cyclic and seismic undrained stress control ring shear tests. One sample is volcanic ash taken from the base of landslide deposits (mass transport deposits), from 130 to 190?m deep layer below the submarine floor which was drilled and cored by the Integrated Ocean Drilling Program Expedition 333. Another two samples are the Neogene silty–sand and silt taken from the Omaezaki hill adjacent to the Senoumi, because the shear zone might have been formed in Neogene layers extending from on-land to the continental shelf. The largest strength reduction from peak to steady-state shear resistance in the undrained cyclic loading test was found in volcanic ash. The strength reduction in Neogene silty–sand was smaller than volcanic ash, while the Neogene silt mobilized the least post-failure strength reduction. An integrated model simulating the initiation and motion of earthquake-induced rapid landslides (landslide simulation (LS)-RAPID, Sassa et al. Landslides 7–3:219–236, 2010) was applied to this study. The steady-state shear resistance and other geotechnical parameters measured by the undrained ring shear tests and the greatest strong motion record in the 2011 off-the-Pacific Coast of Tohoku earthquake (M w 9.0), also known as “2011 Tohoku Earthquake” at the observation point MYG004 (2,933?gal) were input to this model. As the result, it was found that landslides would be triggered by 0.30–1.0 times of MYG004 in volcanic ash, 0.4–1.0 times of MYG004 in Neogene silty–sand and Neogene silt, though the depth and area of triggered landslides were different in soils and intensity of shaking. Feature, created by LS-RAPID using the parameters of volcanic ash, was most similar to the Senoumi in depth and extent. The result obtained from this study includes a hypothesis to be proved, but presents the strong need to investigate the risk of the large-scale submarine landslides which could enhance tsunami wave and possibly enlarge the submarine landslide retrogressively into the adjacent coastal plain by the upcoming mega earthquake in the Nankai Trough.  相似文献   

16.
Earthquake-triggered landslides are a major geological hazard in Central Asia. In July 1949, the M7.4 Khait earthquake triggered many hundreds of landslides in a mountainous region near the southern limit of the Tien Shan Mountains, central Tajikistan. These landslides involved widespread rock-slope failure as well as large numbers of flowslides in loess that mantles the steep slopes of the region. In the Yasman valley hundreds of loess landslides coalesced to form a massive loess flow (est. vol. 245 Mm3) that travelled up to 20 km on a slope of only 2°. In an adjacent valley, the Khait landslide involved transformation of an earthquake-triggered rockslide into a very rapid flow by the entrainment of saturated loess into its movement. It travelled 7.41 km over a vertical distance of 1421 m with an estimated average velocity of ~30 m/s. We estimate its volume as 75 Mm3, an order of magnitude less that previously published estimates. The Khait landslide was simulated using DAN. The number of casualties due to earthquake-triggered landslides in the epicentral region was considerable. Approximately 4000 people were killed in the Yasman valley loess flow as 20 villages (kishlaks) were overwhelmed. In the Khait landslide alone we estimate ca. 800 people lost their lives when the villages of Khait and Khisorak were overrun by rapidly moving debris. Our data indicates that a total of approximately 7200 people were killed by earthquake-triggered landslides in the epicentral region of the Khait earthquake and that, in terms of loss of life, the 1949 Yasman valley loess flow was one of the most destructive landslides in recent history.  相似文献   

17.
Different models are used to evaluate the seashore effects of the tsunami generated by an asteroid impacting the shallow-water plateau in the northwest basin of the Black Sea. The shortest distance between the impact location and the coast is about 185 km. The tsunami’s effects on the coastal regions depend on many factors among which the most important is asteroid size. The tsunami generated by a 250-m asteroid reaches the nearest dry land location in 35 min and needs about 2 h to arrive all over the Black Sea coast. The run-up value is about 2 m high on Turkish and Crimean coasts. In the western Black Sea regions, the wave height is about 3 m. The run-up values strongly depend on bathymetry and topography peculiarities. The run-up values in case of the tsunami generated by a 1,000-m-sized asteroid are up to five to six times larger than in case of the 250-m impactor, depending on location. Differences between the tsunami’s dynamics on coastal regions situated in the proximity of deep water and shallow water, respectively, are outlined. Aspects concerning accidental or deliberate nuclear explosions are briefly referred. Possible social consequences and prevention are shortly discussed.  相似文献   

18.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   

19.
Arthur Wichmann’s “Earthquakes of the Indian Archipelago” documents several large earthquakes and tsunami throughout the Banda Arc region that can be interpreted as mega-thrust events. However, the source regions of these events are not known. One of the largest and well-documented events in the catalog is the great earthquake and tsunami affecting the Banda Islands on August 1, 1629. It caused severe damage from a 15-m tsunami that arrived at the Banda Islands about a half hour after violent shaking stopped. The earthquake was also recorded 230 km away in Ambon, but no tsunami is mentioned. This event was followed by at least 9 years of uncommonly frequent seismic activity in the region that tapered off with time, which can be interpreted as aftershocks. The combination of these observations indicates that the earthquake was most likely a mega-thrust event. We use an inverse modeling approach to numerically reconstruct the tsunami, which constrains the likely location and magnitude of the 1629 earthquake. Only, linear numerical models are applied due to the low resolution of bathymetry in the Banda Islands and Ambon. Therefore, we apply various wave amplification factors (1.5–4) derived from simulations of recent, well-constrained tsunami to bracket the upper and lower limits of earthquake moment magnitudes for the event. The closest major earthquake sources to the Banda Islands are the Tanimbar and Seram Troughs of the Banda subduction/collision zone. Other source regions are too far away for such a short arrival time of the tsunami after shaking. Moment magnitudes predicted by the models in order to produce a 15-m tsunami are Mw of 9.8–9.2 on the Tanimbar Trough and Mw 8.8–8.2 on the Seram Trough. The arrival times of these waves are 58 min for Tanimbar Trough and 30 min for Seram Trough. The model also predicts 5-m run-up for Ambon from a Tanimbar Trough source, which is inconsistent with the historical records. Ambon is mostly shielded from a wave generated by a Seram Trough source. We conclude that the most likely source of the 1629 mega-thrust earthquake is the Seram Trough. Only one earthquake >Mw 8.0 is recorded instrumentally from the eastern Indonesia region although high rates of strain (50–80 mm/a) are measured across the Seram section of the Banda subduction zone. Enough strain has already accumulated since the last major historical event to produce an earthquake of similar size to the 1629 event. Due to the rapid population growth in coastal areas in this region, it is imperative that the most vulnerable coastal areas prepare accordingly.  相似文献   

20.
A large earthquake of magnitude MW = 6.3 occurred on 14 August 2003 NW of the Lefkada Island, which is situated at the Ionian Sea (western Greece). The source parameters of this event are determined using body-wave modeling. The focal depth was found equal to 9 km, the constrained focal mechanism revealed dextral strike–slip motion (φ = 15°, Δ = 80° and λ = 170°), the duration of the source time function was 8 s and the seismic moment 2.9 × 1025 dyn cm. The earthquake occurred close to the northern end of the Kefallinia transform fault, where the 1994 moderate event and its aftershock sequence were also located. The epicentral distribution of the 2003 aftershock sequence revealed the existence of two clusters. The first one is located close to the epicentral area of the mainshock, while the second southern, close to the northwestern coast of the Kefallinia Island. A gap of seismicity is observed between the two clusters. The length of the activated zone is approximately 60 km. The analysis of data revealed that the northern cluster is directly related to the mainshock, while the southern one was triggered by stress transfer caused by the main event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号