首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

2.
The stratigraphic, paleogeographic and tectonic evolution of the intracratonic Congo Basin in Central Africa has been revised on the basis of an integrated interpretation of gravity, magnetic and reflection seismic data, together with a literature review of papers sometimes old and difficult to access, map compilation and partial reexamination of outcrop and core samples stored in the Royal Museum for Central Africa (RMCA). The Congo Basin has a long and complex evolution starting in the Neoproterozoic and governed by the interplay of tectonic and climatic factors, in a variety of depositional environments.This multidisciplinary study involving 2D gravity and magnetic modeling as additional constraints for the interpretation of seismic profiles appears to be a powerful tool to investigate sedimentary basins where seismic data alone may be difficult to interpret. The tectonic deformations detected in the Congo Basin after the 1970–1984 hydrocarbon exploration campaign in the Democratic Republic of Congo (DRC) have been attributed to crustal contraction and basement uplift at the center of the basin, following a transpressional inversion of earlier graben structures. Two‐dimensional gravity and magnetic models run along key seismic lines suggest the presence of evaporite sequences in some of the deeper units of the stratigraphic succession, in the lateral continuity with those observed in the Mbandaka and Gilson exploration wells. The poorly defined seismic facies that led to the previous basement uplift interpretation of the crystalline basement is shown to correspond to salt‐rich formations that have been tectonically de‐stabilized. These features may be related to vertical salt‐tectonics connected to the near/far‐field effects of the late Pan‐African and the Permo‐Triassic compressive tectonic events that affected this African part of Gondwana.  相似文献   

3.
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.  相似文献   

4.
We present a new tectonic map focused upon the extensional style accompanying the formation of the Tyrrhenian back‐arc basin. Our basin‐wide analysis synthetizes the interpretation of vintage multichannel and single‐channel seismic profiles, integrated with modern seismic images, P‐wave velocity models, and high‐resolution morpho‐bathymetric data. Four distinct evolutionary phases of the Tyrrhenian back‐arc basin opening are further constrained, redefining the initial opening to Langhian/Serravallian time. Listric and planar normal faults and their conjugates bound a series of horst and graben, half‐graben and triangular basins. Distribution of extensional faults, active throughout the basin since Middle Miocene, allows us to define an arrangement of faults in the northern/central Tyrrhenian mainly related to a pure shear which evolved to a simple shear opening. At depth, faults accommodate over a Ductile‐Brittle Transitional zone cut by a low‐angle detachment fault. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variation throughout the back‐arc basin combined with wide‐angle seismic velocity models allows to explore the relationships between shallow deformation, faults distribution throughout the basin, and crustal‐scale processes as thinning and exhumation.  相似文献   

5.
The understanding of the crustal transition between orogenic zones and cratonic portions in distal regions of foreland basins has received increasing attention, but the analysis is often hampered by the sedimentary cover. Despite the peculiar location of the Acre Basin, specifically between the Amazonian Craton and the sub-Andean zone, local basement studies are still scarce due to lacking seismic data and exploratory wells. Therefore, this work aims to map basement depths, estimate crustal compositions and identify the main depocenters, structures and limits of Acre Basin using an integrated analysis to understand better the region lithospheric evolution, its relationship with the Amazonian Craton and its positioning within the Andean orogeny. For that, we used well, 2D seismic reflection, airborne and ground gravity and magnetic data as well as the EMG2008. Tilt Depth estimates indicate basement depths between 500 and 7800 m and larger sedimentary thicknesses in the northern portion. Additionally, we modelled groups of potential sources between 0.1 and 22 km and Moho depths between 26 and 37 km. Compositionally, the upper crust consists dominantly of meta-sedimentary and low-grade metamorphic rocks and granites, indicating that the sub-Andean and Acre Basins share a similar basement. Thus, there are indications that the basement of the Acre Basin is essentially formed by the Sunsás province in the Amazonian Craton. However, local differences in basement depth, magnetic susceptibility and exploratory potential led to the subdivision into Divisor and Xapuri sub-basins, north and south of the Fitzcarrald Arch, respectively. Finally, it was possible to establish the limits of the Andean orogeny influence in the Acre Basin and delimit the area of the Western Amazon Foredeep installed during the Neogene.  相似文献   

6.
A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.  相似文献   

7.
This article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.  相似文献   

8.
Common basin models assume that the post‐rift tectonic evolution of most basins is usually associated with tectonic quiescence. However, tectonic inversion during the post‐rift phase has been proposed for several sedimentary basins worldwide, but how and why it happens is still a matter of debate, especially in intracontinental settings where the lithosphere is old and thick. Here, we use geological and geophysical data from the Rio do Peixe Basin in NE Brazil to show evidence that intracontinental sedimentary basins can be tectonically inverted by far‐field compressive stresses acting on pre‐existing weakness zones of lithospheric‐scale where stresses can concentrate and inversion can occur. Geomorphological and field data combined with seismic reflection, gravimetric and borehole data show that: (a) inversion occurred along two main Precambrian lithospheric‐scale shear zones, the Patos (E‐W trending) and Portalegre (NE‐SW trending), which had already been reactivated as basin‐bounding faults during the earlier rift stage; (b) post‐rift reactivation affected (mostly) the original master normal faults with the largest rift displacements, and locally produced new reverse faults; (c) during contraction, deformation was partitioned between fault reactivation and buckling of the incompetent sediment pushed against the hard basement; (d) all these signs of inversion have been observed in the field and can be demonstrated on seismic reflection profiles; and (e) combined gravimetric and seismic data show that the main structures of the basin were followed by an inversion. These data are consistent with the operation of WSW‐ENE horizontal maximum compressive stress as a result of combined pushes of the Mid‐Atlantic Ridge (towards the W) and the Andes (towards the E), responsible for the post‐rift oblique inversion of normal faults inherited from the rift phase and formed with vertical maximum compressive stress.  相似文献   

9.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

10.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   

11.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

12.
Basin modelling studies are carried out in order to understand the basin evolution and palaeotemperature history of sedimentary basins. The results of basin modelling are sensitive to changes in the physical properties of the rocks in the sedimentary sequences. The rate of basin subsidence depends, to a large extent, on the density of the sedimentary column, which is largely dependent on the porosity and therefore on the rate of compaction. This study has tested the sensitivity of varying porosity/depth curves and related thermal conductivities for the Cenozoic succession along a cross‐section in the northern North Sea basin, offshore Norway. End‐member porosity/depth curves, assuming clay with smectite and kaolinite properties, are compared with a standard compaction curve for shale normally applied to the North Sea. Using these alternate relationships, basin geometries of the Cenozoic succession may vary up to 15% from those predicted using the standard compaction curve. Isostatic subsidence along the cross‐section varies 2.3–4.6% between the two end‐member cases. This leads to a 3–8% difference in tectonic subsidence, with maximum values in the basin centre. Owing to this, the estimated stretching factors vary up to 7.8%, which further gives rise to a maximum difference in heat flow of more than 8.5% in the basin centre. The modelled temperatures for an Upper Jurassic source rock show a deviation of more than 20 °C at present dependent on the thermal conductivity properties in the post‐rift succession. This will influence the modelled hydrocarbon generation history of the basin, which is an essential output from basin modelling analysis. Results from the northern North Sea have shown that varying compaction trends in sediments with varying thermal properties are important parameters to constrain when analysing sedimentary basins.  相似文献   

13.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

14.
The structure and tectonic evolution of an evaporite basin are investigated in this case study, which combines the interpretation of magnetic data with the more commonly applied seismic reflection and gravity methods. The Maritimes Basin contains up to 18 km of Upper Palaeozoic sedimentary rocks resting on the basement of the Acadian orogeny. Carboniferous rocks are intensely deformed to the southeast of the Magdalen Islands as a result of deformation of evaporites of the Viséan Windsor Group. Short‐wavelength (<5 km) magnetic lineations define NNE‐ and ENE‐trending linear belts, coincident with the mapped pattern of salt structures. Magnetic models show that these lineations can be explained by the infill of subsidence troughs by high‐susceptibility sediment and/or the presence of basaltic rocks, similar to those uplifted and exposed on the Magdalen Islands. Additional shallow, magnetic sources are interpreted to result from alteration mineralization in salt‐impregnated, iron‐rich sedimentary rocks, brecciated during salt mobilization. Magnetic susceptibility measurements of samples from the Pugwash mine confirm the presence of higher susceptibility carnallite‐rich veins within salt units. Salt tectonism and basin development were influenced by the structure of the base group, the deepest regionally continuous seismic reflections (ca. 5–11 km), associated with an unconformity at the base of the Windsor Group, sampled at the Cap Rouge well. Salt structural evolution, formation of the magnetic lineations and geometry of the base group are associated with regional dextral transpression during basin development (late Carboniferous) and/or Alleghanian Orogeny (late Carboniferous to Permian). In this and similar studies, the effective use of magnetics is dependent upon the presence of rocks of high magnetic susceptibility in contrast to the low‐susceptibility salt bodies. In the absence of high‐susceptibility rocks, magnetic lows over the salt structures may be modelled, similar to commonly applied gravity techniques, to derive the internal structure and geometry.  相似文献   

15.
Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat.  相似文献   

16.
The distribution and structure of the Mesozoic and Cenozoic cover within the central part of the North Iberian Margin (Bay of Biscay) is analysed based on a dense set of 2D seismic reflection lines and logs. The integration of well data allows the recognition of seven seismostratigraphic units and the construction of a surface that illustrates the 3D morphology of this area at the time of the Jurassic rifting. The study zone comprises what is known as Le Danois Bank, a basement high, and the Asturian Basin, one of the sedimentary basins originated during the Iberian rifting at the end of the Paleozoic. Its development continued with the oceanisation of the Bay of Biscay as a failed arm of the Atlantic rift; later, during the Cenozoic, a drastic change in tectonic regime induced the partial closure of Biscay and building up the Cantabrian?Pyrenean chain along the northern border of Iberia. This compressional period left its imprint in the Asturian Basin sediments in the form of a mild inversion and general uplift. The geometry of the basin bottom appears as an asymmetric bowl thinning out towards the edges, with a main E‐W depocenter, separated by E‐W striking faults from a secondary one. Those bounding faults show twisted trends in the north, interpreted as a consequence of the compressional period, when a transfer zone in a N‐S direction formed between the two E‐W striking deformation fronts in Biscay. This study shows that the transfer zone extends further to the west, reaching the longitude of Le Danois Bank. The maximum thickness of the filling within the Asturian Basin is estimated in more than 10 km, deeper than assessed in previous studies. The recognition of frequent halokynetic structures at this longitude is another observation worth to remark. Based on this study, it is suggested that the basin formed on top of a distal basement block of stretched crust limiting with the hyperextended rifted domain of Biscay. This location largely conditioned its deformation during the late compression.  相似文献   

17.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

18.
Abstract The Hebridean basins are part of a compartmentalized half-graben developed in the hanging wall of the partially reactivated Outer Isles Fault. The importance of geological inheritance in the development of these basins can be demonstrated clearly using the widespread exposure of metamorphic basement around the basin margins. The basement structures have been analysed using thematically mapped Landsat images in conjunction with selective field studies. Results of such studies have been integrated with maps generated from the interpretation of offshore multichannel seismic reflection profiles to produce an architectural framework for basin development.
It can be demonstrated that the principal basement faults originated in the early Proterozoic as mid-crustal shear zones and that they have subsequently been partially reactivated during post-Caledonian basin development beginning in the Carboniferous and probably also during an earlier period of basin development in the late Proterozoic (the Torridonian). It is the geometry of the pre-existing basement structures that has controlled the three-dimensional shape of the sedimentary basins and the spatial and temporal distribution of the basin fill.  相似文献   

19.
Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin.  相似文献   

20.
《Basin Research》2018,30(4):766-782
This paper proposes a new methodology to improve the location of potential karstified areas by gravity inversion of a 3D geological model. A geological 3D model is built from surface observations, 2D seismic reflection profiles and well data. The reliability of this geological 3D model obtained from integration, interpretation and interpolation of such data is first tested against the structural consistency of the model. Its theoretical gravimetric response is compared to gravity field during the forward problem in order to evaluate the validity/robustness of the geological model. The coherency between the gravity field and the gravimetric response is tested. The litho‐inversion modelling quantifies the distribution of rock density in a probabilistic way, taking into account the geology and physical properties of rocks, while respecting the geological structures represented in the 3D model. The result of the inversion process provides a density distribution within carbonate formations that can be discussed in term of karstification distribution. Thus, lower densities correlate with areas that are strongly karstified. Conversely, higher than mean densities are found in carbonate formations mostly located under marly and impervious formations, preserving carbonate from karstification and paleokarstification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号