首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U]N, [Gd/Lu]N and [Eu/Eu*]N and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.  相似文献   

2.
柴达木盆地那棱格勒河流域是我国目前最大的盐湖型锂矿区和工业设施最为完备的卤水锂工业基地,长期以来关于其尾闾盐湖区锂的物源问题备受关注。尽管目前的众多研究已经对流域内地表水体及尾闾区盐湖中锂的物源有了较为一致的看法,但盆地周缘围岩风化过程在其中起到的作用仍缺乏系统性认识。基于部分保守性微量元素在物源示踪研究中的重要作用,本文通过对流域内河流表层沉积物中的REEY、Li、Sc、Co、Nb、Ta、Th等微量元素开展其地球化学行为方面的分析,讨论了沉积物的物源属性特征及其中锂的来源特征,为深入认识盐湖区游离态锂资源的物源提供了新的证据。结果表明,那棱格勒河流域与毗邻的东、西对比区河流沉积物有着相似的化学风化背景和基岩类型,源岩具有显著的长英质岩和基性岩的二元混合特征,且基性源岩所占比重更大;而沉积物中的锂除尾闾盐湖区明显受到富锂孔隙水体夹带的影响外,其它地区锂的来源特征与沉积物的物源特征相同,表明地表迁移过程对介质中锂的通量影响较弱,沉积物中的锂更多的是以赋存在相关矿物结构中的形式存在;研究区来自源岩风化作用提供的游离态锂的量较为有限,尾闾盐湖中的锂资源主要以昆仑山深大断裂带涌出的热泉水的长年补给为主。  相似文献   

3.
Unravelling early Cenozoic basin development in northern Tibetan Plateau remains crucial to understanding continental deformation mechanisms and to assessing models of plateau growth. We target coarse-grained red beds from the Cenozoic basal Lulehe Formation in the Qaidam basin by combining conglomerate clast compositions, paleocurrent determinations, sandstone petrography, heavy mineral analysis and detrital zircon U–Pb geochronology to characterize sediment provenance and the relationship between deformation and deposition. The red beds are dominated by matrix-supported, poorly sorted clastic rocks, implying low compositional and textural maturity and short transport distances. Although most sandstones have high (meta)sedimentary lithic fragment contents and abundant heavy minerals of metamorphic origin (e.g., garnet, epidote and chlorite), spatiotemporal differences in detrital compositions are evident. Detrital zircon grains mainly have Phanerozoic ages (210–280 Ma and 390–480 Ma), but Proterozoic ages (750–1000 Ma, 1700–2000 Ma and 2300–2500 Ma) are also prominent in some samples. Analysed strata display dissimilar (including south-, north- and west-directed) paleocurrent orientations. These results demonstrate that the Cenozoic basal deposits were derived from localized, spatially diverse sources with small drainage networks. We advocate that initial sedimentary filling in the northern Qaidam basin was fed by parent-rocks from the North Qaidam-South Qilian belts and the pre-Cenozoic basement within the Qaidam terrane interior, rather than southern distant Eastern Kunlun regions. Seismic and drilling well stratigraphic data indicate the presence of paleohighs and syn-sedimentary reverse faults and noteworthy diversity in sediment thickness of the Lulehe Formation, revealing that the Qaidam terrane exhibited as several isolated depocenters, rather than a coherent basin, in the early stage of the Cenozoic deposition. We suggest the Cenozoic Qaidam basin to have developed in a contractional deformation regime, which supports models with synchronous deformation throughout most of Tibet shortly after the India-Eurasia collision.  相似文献   

4.
柴达木盆地昆北地区位于柴达木盆地西部南区的昆仑山前缘,该地区构造活动频繁,地层完整,是研究古环境和古气候理想地区。通过采集昆北地区切26井新生界下部泥岩样品,对其进行微量元素分析。结果表明:在地层界线附近,路乐河组Cu、U、Cr、Sr元素含量平均值分别为18.34×10-6、3.24×10-6、141.68×10-6、107.10×10-6,下干柴沟组下段为28.17×10-6、3.35×10-6、192.07×10-6、217.05×10-6。下干柴沟组下段微量元素有明显增大趋势,指示沉积环境发生变化。U与陆源碎屑来源指示元素Th相关性差(R2=0.174 5),表明U主要为自生成因,因此其含量的增加可以指示原始沉积水体还原程度的增强。Cr与U表现为弱相关(R2=0.420 9),表明水体环境的变化对Cr的富集有一定的影响;氧化还原指标U/Th、V/Cr表明研究区古环境为氧化水体沉积环境,U/Th、V/Cr指标在下干柴沟组下段变大表明水体加深,还原性增强。利用Sr/Cu比值变化以及结合化石种属演化等推测地层界线附近古气候经历了干旱—湿润—干旱的旋回变化。  相似文献   

5.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

6.
Sedimentary strata in the Lhasa terrane of southern Tibet record a long but poorly constrained history of basin formation and inversion. To investigate these events, we sampled Palaeozoic and Mesozoic sedimentary rocks in the Lhasa terrane for detrital zircon uranium–lead (U–Pb) analysis. The >700 detrital zircon U–Pb ages reported in this paper provide the first significant detrital zircon data set from the Lhasa terrane and shed new light on the tectonic and depositional history of the region. Collectively, the dominant detrital zircon age populations within these rocks are 100–150, 500–600 and 1000–1400 Ma. Sedimentary strata near Nam Co in central Lhasa are mapped as Lower Cretaceous but detrital zircons with ages younger than 400 Ma are conspicuously absent. The detrital zircon age distribution and other sedimentological evidence suggest that these strata are likely Carboniferous in age, which requires the existence of a previously unrecognized fault or unconformity. Lower Jurassic strata exposed within the Bangong suture between the Lhasa and Qiangtang terranes contain populations of detrital zircons with ages between 200 and 500 Ma and 1700 and 2000 Ma. These populations differ from the detrital zircon ages of samples collected in the Lhasa terrane and suggest a unique source area. The Upper Cretaceous Takena Formation contains zircon populations with ages between 100 and 160 Ma, 500 and 600 Ma and 1000 and 1400 Ma. Detrital zircon ages from these strata suggest that several distinct fluvial systems occupied the southern portion of the Lhasa terrane during the Late Cretaceous and that deposition in the basin ceased before 70 Ma. Carboniferous strata exposed within the Lhasa terrane likely served as source rocks for sediments deposited during Cretaceous time. Similarities between the lithologies and detrital zircon age‐probability plots of Carboniferous rocks in the Lhasa and Qiangtang terranes and Tethyan strata in the Himalaya suggest that these areas were located proximal to one another within Gondwanaland. U–Pb ages of detrital zircons from our samples and differences between the geographic distribution of igneous rocks within the Tibetan plateau suggest that it is possible to discriminate a southern vs. northern provenance signature using detrital zircon age populations.  相似文献   

7.
The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.  相似文献   

8.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

9.
碎屑岩的地球化学特征对应于特定的源区和构造环境,本文利用主微量元素对昌都盆地的早白垩纪景星组地层进行了地球化学分析,并与兰坪思茅盆地的早白垩纪地层进行了物源对比研究。岩相学研究显示景星组沉积岩的成分成熟度较低,其物源以火山岩为主。昌都地区景星组的主量元素地球化学分析显示其源区为石英质沉积岩源区和长英质火成岩源区。相比兰坪思茅地区早白垩纪地层,景星组地层物源的输入比较单一。景星组地层的CIA在59~78之间,平均为67,明显低于扒沙河组地层,表明兰坪思茅盆地的早白垩纪地层的风化强度明显高于昌都盆地。主微量构造环境判别图解显示昌都—兰坪思茅盆地早白垩纪地层的物源构造环境主要为被动大陆边缘与活动大陆边缘,同时具有大陆岛弧的特征。  相似文献   

10.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

11.
The formation processes of the late Neogene sedimentary basins in Northern Hokkaido have been investigated on the basis of rock magnetism, structural geology and numerical modelling. Untilted site‐mean directions of remanent magnetization of the Wakkanai Formation, obtained from oriented core samples in Horonobe, suggest remarkable counterclockwise block rotation (ca. 70°) since the late Neogene. Uniform microscopic fabric of the siliceous sediments was inferred from the alignment of the principal axes of the anisotropy of magnetic susceptibility (AMS). After correction for tectonic rotation, the maximum axis of AMS, which reflects the sedimentary fabric of the dominant paramagnetic minerals, is in an E‐W direction, which is concordant with the influx direction of diatomaceous particles into the N‐S elongate sedimentary basins. The difference in the bulk initial magnetic susceptibility of the siliceous sediments of the Wakkanai Formation between the depocenter of the basin and its peripheral part implies that terrigenous non‐magnetic fraction has been sorted out during transportation of the detrital grains as gravity flows. As for the development mechanism of the N‐S elongate late Neogene basins in Northern Hokkaido, their depocenter arrangement and subsidence pattern indicates dextral motions upon a longitudinal fault zone along the Eurasian convergent margin. Dislocation modelling was adopted to explain vertical displacement and rotational motion around the study area and successfully restored the deformation pattern based on the assumption of dextral slip at a left‐stepping part of a strand of the transcurrent fault.  相似文献   

12.
Quantifying the Cenozoic growth of high topography in the Indo‐Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present‐day north‐eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE‐vergent thrust faults and are now exposed in the high ranges of the north‐eastern corner of the Tibetan Plateau. We focus on a particularly well‐exposed basin, located ~20 km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900 m of alluvial sediments that become finer‐grained away from the basin‐bounding fault. Additionally, beds in the proximal footwall of the basin‐bounding fault exhibit progressive, up‐section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K–Ar dating of volcanic rocks that floor and cross‐cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW–SE contractional deformation similar to that documented throughout the Qinling–Dabie orogen to the east. The Songpan‐Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming inboard of the east Asian margin.  相似文献   

13.
库姆塔格沙漠沉积物粒度端元特征及其物源启示   总被引:2,自引:1,他引:1  
关于沙漠沉积物粒度的研究已经开展得十分广泛,但是从粒度资料中提取沙漠沉积物的搬运和物源信息的工作仍较薄弱。为此,将端元模型分析技术应用到沙漠沉积物物源判断研究中,对库姆塔格沙漠的沉积物(包括沙丘和丘间地)进行粒度端元提取,并结合各端元的沉积动力特征、空间分布格局及与潜在物源的对比,对沙漠的物质来源进行了判断。结果表明:端元1(66.90~309.52 μm)为由三垄沙、雅丹和阿尔金山冲洪积物共同组成的细粒跃移质;端元2(163.48~586.00 μm)为全由三垄沙和雅丹贡献的较粗跃移质;端元3(309.52~2 711.36 μm和66.90~143.90 μm)则为被后期改造了的阿尔金山冲洪积物。通过各端元的空间分布格局和与潜在物源沉积物端元的对比,我们认为三垄沙、雅丹和阿尔金山冲洪积物均为库姆塔格沙漠沙丘和丘间地提供了物源供应,但北部的三垄沙和雅丹对沙丘贡献较多,而南部的阿尔金山冲洪积物则对丘间地贡献较多。另外,通过对端元1的分析,我们更倾向于认为在库姆塔格沙漠沉积物的部分粒级和局部地区存在丘间地为沙丘提供物源这一过程。  相似文献   

14.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

15.
柴达木盆地盐湖是我国重要的硼资源富集区和成矿区。针对盆地内不同盐湖硼资源富集程度的差异性,本文采集柴达木盆地北缘河水和泉水样品,分析其硼和锂含量、矿化度和pH值,结合柴达木盆地不同流域补给水及蚀源区岩石已有的硼锂含量,总结盆地水岩体系硼锂含量地球化学特征,并对柴达木盆地北缘富硼盐湖物源进行了探讨。结果表明,柴达木盆地北缘祁连山流域水体和岩石硼含量均较阿尔金山和昆仑山流域高,而其锂含量均较昆仑山那棱格勒河流域低,显示柴达木盆地北缘水岩相对富硼贫锂的地球化学特征。综合对比柴达木盆地不同流域硼锂资源分布,显示出整个盆地硼锂含量的不均一性和不同步性特征。针对柴达木盆地北缘富硼盐湖的物源研究,主要归纳为祁连山系围岩(含电气石花岗岩)的风化淋滤、深部富硼地下水补给和含盐风成沉积溶滤输入成因,其中深部富硼地下水补给为最主要的来源。  相似文献   

16.
The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimentary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high‐resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi‐arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening‐upward trend. Clast‐count and point‐count data evidence the progressive erosion from Mesozoic volcanic rocks to Palaeozoic basement granitoids and deposits located around the Cordillera de Domeyko area, which is indicative of an unroofing process. The palaeocurrent data show that the source area was located to the west. The U/Pb detrital zircon geochronological data give maximum depositional ages of 149 Ma for the base of the Tonel Formation (Agua Salada Member), and 107 Ma for its middle member (La Escalera Member); 79 Ma for the lower Purilactis Formation (Limón Verde Member), and 73 Ma for the Barros Arana Formation. The sources of these zircons were located mainly to the west, and comprised from the Coastal Cordillera to the Precordillera. The ages and pulses record the tectonic activity during the Peruvian Phase, which can be split into two large events; an early phase, around 107 Ma, showing uplift of the Coastal Cordillera area, and a late phase around 79 Ma indicating an eastward jump of the deformation front to the Cordillera de Domeyko area. The lack of internal deformation and the thicknesses measured suggest that deposition of the units occurred in the foredeep zone of an eastward‐verging basin. This sedimentation would have ended with the K‐T phase, recognized in most of northern Chile.  相似文献   

17.
Kumtagh Desert is one of the eight biggest deserts in China, but poorly investigated before our interdisciplinary study because of the difficulty of access. In this paper, 33 representative surface sediment samples were collected from the Kumtagh Desert and analyzed in the laboratory to obtain heavy mineral components and geochemical element contents. Results show that various kinds of heavy minerals are present in these samples, with high levels of epidote and hornblende. Si and Al take up a large part of chemical composition. Compared with the average composition of geochemical elements of the upper continental crust (UCC), except Si and Ca, all elements are depleted to a certain degree; Fe, Mg, Ca, P, Ti and Mn have high correlation coefficients in their contents. The mineral and geochemical composition of the Kumtagh Desert sediments have a similarity with that of rocks of Altyn Tagh Mountains, and the surface sediments of the alluvial/diluvial fans around the Altyn Tagh Mountains and that of the Taklamakan Desert, indicating that one major source of the Kumtagh Desert sediments is located in the Altyn Tagh Mountains. Alluvial deposits and lake sediments in Aqik valley and lower reaches of Shule River are prone to be eroded and transported by the strong northeasterly wind into the Kumtagh Desert, forming another source of the desert deposits. An A-CN-K ternary diagram shows that a weak degree chemical weathering by the loss of Na and K occurred in these sediments, whereas A-CNK-FM ternary diagram suggests that Fe and Mg have undergone a significant chemical differentiation. Physical weathering processes cause easy erosion and enrichment in fine particles for mafic minerals, thus coarse desert sand particles can be relatively depleted in Fe and Mg. The mineral and geochemical composition of sediments in arid regions experiencing less chemical weathering are mostly affected by physical weathering.  相似文献   

18.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

19.
柴达木盆地盐湖是我国重要的硼资源富集区和成矿区。针对盆地内不同盐湖硼资源富集程度的差异性,采集柴达木盆地北缘河水和泉水样品,分析其硼和锂含量、矿化度和p H值,结合柴达木盆地不同流域补给水及蚀源区岩石已有的硼锂含量,总结盆地水—岩体系硼锂含量地球化学特征,并对柴达木盆地北缘富硼盐湖物源进行了探讨。结果表明,柴达木盆地北缘祁连山流域水体和岩石硼含量均较阿尔金山和昆仑山流域高,而其锂含量均较昆仑山那棱格勒河流域低,显示柴达木盆地北缘水—岩相对富硼贫锂的地球化学特征。综合对比柴达木盆地不同流域硼锂资源分布,显示出整个盆地硼锂含量的不均一性和不同步性特征。针对柴达木盆地北缘富硼盐湖的物源研究,主要归纳为祁连山系围岩(含电气石花岗岩)的风化淋滤、深部富硼地下水补给和含盐风成沉积溶滤输入成因,其中深部富硼地下水补给为最主要的来源。  相似文献   

20.
There is a set of Late Cenozoic sediments in the Kunlun Pass area, Tibetan Plateau, China. Paleomagnetic, ESR and TL dating suggest that they date from the Late Pliocene to the Early Pleistocene. Analyses of stratigraphy, sedimentary characteristic, and evolution of the fauna and flora indicate that, from the Pliocene to the early Quaternary (about 5–1.1 Ma BP), there was a relatively warm and humid environment, and a paleolake occurred around the Kunlun Pass. The elevation of the Kunlun Pass area was no more than 1500 m, and only one low topographic divide existed between the Qaidam Basin and the Kunlun Pass Basin. The geomorphic pattern in the Kunlun Pass area was influenced by the Kunlun–Yellow River Tectonic Movement 1.1–0.6 Ma BP. The Wangkun Glaciation (0.7–0.5 Ma) is the maximum Quaternary glaciation in the Pass and in other areas of the Plateau. During the glaciation, the area of the glaciers was 3–5 times larger than that of the present glacier in the Pass area. There was no Xidatan Valley that time. The extreme geomorphic changes in the Kunlun Pass area reflect an abrupt uplift of the Tibet Plateau during the Early and Middle Pleistocene. This uplift of the Plateau has significance on both the Plateau itself and the surrounding area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号