首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes. Through the research of earthquake cases, researchers have a relatively consistent method to determine the clarity of an identified seismic belt, but there is still a lack of method on seismic belt identification from the distribution of scattered points. Due to the complexity of exhaustive algorithm, the rapid automatic identification technique of seismic belts has been progressing slowly. Visual recognition is still the basic method of seismic belt identification. Based on the algorithm of distance correlation, this paper presents a fast automatic identification method of seismic belts. The effectiveness of this method was proved by 100 random earthquakes and an example of seismic belts of magnitude 4.0 before the 2005 Jiujiang M5.7 earthquake. The results show that: ① the automatic identification of seismic belts should first identify the “relational earthquake”, then identify the “suspected seismic belt”, and finally use the criterion of seismic belt clarity to determine; ② random earthquakes and real earthquakes identification results show that the distance correlation method can realize the fast automatic identification of seismic belts by computer.  相似文献   

2.
2022年1月8日,青海省门源县发生MS6.9地震。使用青海、甘肃等区域数字台网所观测到的2009年1月1日—2022年2月8日间青海门源及周边地区(36°~39°N,101°~104°E)14 869次地震事件的地震观测资料,基于双差成像(TomoDD)方法进行重定位分析,结果表明:门源及周边地区地震震源深度较浅,主要集中在5~15 km深度范围,其中10 km附近分布最多。推断该深度区域为门源及周边地区的主要孕震区。基于地震重定位结果和主震区三维速度结构分别对2016年门源MS6.4地震和此次地震序列的发震机理进行分析对比,发现两次地震都位于高速异常体边缘,速度结构与断裂、地震序列吻合较好。2022年门源地震位于高速体的西端末梢位置,是该高速体受青藏高原东北缘顺时针应力作用导致的滑动产生的走滑型地震。  相似文献   

3.
Before the 1944 Tonankai earthquake along the Nankai Trough, seismic activity increased in the shallow depths, and then the activity gradually migrated downwards. When it reached its limit (a depth of approximatelty 70 km), the main shock occurred. Several deep earthquakes, including one ofM5.3, occurred several months prior to the Tonankai earthquake. A similar downward migration pattern also can be recognized regarding the 1952 Tokachi-oki earthquake. In this case the deepest earthquakes reached about 400 km. This may be one of the intermediate-term precursory phenomena of great thrusttype earthquakes in subduction zones. Recent observations in the Tokai district along the Suruga Trough, where a large earthquake is expected to occur in the future, suggest a similar downward migration pattern in the land area.  相似文献   

4.
2015年3月14日在安徽阜阳地区发生了M_S4.3地震,随后发生3月23日M_s3.6余震.主震造成2人死亡13人受伤.房屋倒塌155间,受损1万多间.主震震级不大,而造成的灾害巨大.本文使用CAP方法反演了两次地震的震源机制解和震源深度,结果显示两次地震的震源机制解和深度一致.主震的机制解节面Ⅰ走向110°,倾角75°,滑动角—10°;节面Ⅱ走向202°,倾角80°,滑动角—164°;矩震级M_w4.3,余震矩震级M_w3.7,反演最佳深度均为3 km.最佳深度时波形拟合相关系数较高,表明反演结果是可靠的.使用sPn和sPL深度震相进一步分析了两次地震的震源深度.结果显示,选取的7个台站的sPn震相与Pn震相的平均到时差为1 s,对应的震源深度为3 km.震中距为36 km的利辛台的sPL震相与Pg震相到时差约为1.1 s,对应震源深度约3~4 km之间.两种深度震相分析的震源深度与CAP方法的结果一致,表明本文给出的阜阳地震震源深度为3 km左右基本是可靠的.本次地震造成较大灾害的原因很可能与地震震源较浅有关.阜阳地区地壳结构相对稳定,地质构造演化形成3 km厚的沉积层,本次地震可能是区域应力作用下发生在沉积层里的一次地震.  相似文献   

5.
Conclusions The sequence of the November 29, 1999 Xiuyan, Liaoning, earthquake withM S=5.4 is relocated, and its rupture process is analyzed. Results are as follows: The rupture extended mainly before the January 12, 2000,M S=5.1 earthquake. There are two phases of rupture extending: The first phase was before the November 29, 1999,M S=5.4 earthquake, epicenters were situated within a small region with a dimension of about 5 km, and the focal depth increased. It shows that the rupture mainly extended from shallow part to deep in the vertical direction. The second phase was between theM S=5.4 earthquake and theM S=5.1 earthquake, earthquakes migrated along southeast, the focal depth decreased. It indicates that the rupture extended along southeast and from deep to shallow part. Foundation item: The Project of “Mechanism and Prediction of the Strong Continental Earthquake” (95-13-05-04). Contribution No. 01FE2017, Institute of Geophysics, China Seismological Bureau.  相似文献   

6.
《Geofísica Internacional》2013,52(2):173-196
An analysis of local and regional data produced by the shallow, thrust Ometepec-Pinotepa Nacional earthquake (Mw 7.5) of 20 March 2012 shows that it nucleated at 16.254°N 98.531°W, about 5 km offshore at a depth of about 20 km. During the first 4 seconds the slip was relatively small. It was followed by rupture of two patches with large slip, one updip of the hypocenter to the SE and the other downdip to the north. Total rupture area, estimated from inversion of near-source strong-motion recordings, is ~25 km × 60 km. The earthquake was followed by an exceptionally large number of aftershocks. The aftershock area overlaps with that of the 1982 doublet (Mw 7.0, 6.9). However, the seismic moment of the 2012 earthquake is ~3 times the sum of the moments of the doublet, indicating that the gross rupture characteristics of the two earthquake episodes differ. The small-slip area near the hypocenter and large-slip areas of the two patches are characterized by relatively small aftershock activity. A striking, intense, linear NE alignment of the aftershocks is clearly seen. The radiated energy to seismic moment ratios, (Es/M0), of five earthquakes in the region reveal that they are an order of magnitude smaller for near-trench earthquakes than those that occur further downdip (e.g., 2012 and the 1995 Copala earthquakes). The near-trench earthquakes are known to produce low Amax. The available information suggests that the plate interface in the region can be divided in three domains. (1) From the trench to a distance of about 35 km downdip. In this domain M~6 to 7 earthquakes with low values of (Es/M0) occur. These events generate large number of aftershocks. It is not known whether the remaining area on this part of the interface slips aseismically (stable sliding) or is partially locked. (2) From 35 to 100 km from the trench. This domain is seismically coupled where stick-slip sliding occurs, generating large earthquakes. Part of the area is probably conditionally stable. (3) From 100 to 200 km from the trench. In this domain slow slip events (SSE) and nonvolcanic tremors (NVT) have been reported.The earthquake caused severe damage in and near the towns of Ometepec and Pinotepa Nacional. The PGA exceeded 1 g at a soft site in the epicentral region. Observed PGAs on hard sites as a function of distance are in reasonable agreement with the expected ones from ground motion prediction equations derived using data from Mexican interplate earthquakes. The earthquake was strongly felt in Mexico City. PGA at CU, a hard site in the city, was 12 gal. Strong-motion recordings in the city since 1985 demonstrate that PGAs during the 2012 earthquake were not exceptional, and that similar motion occurs about once in three years.  相似文献   

7.
A sequence of 98 teleseismically recorded earthquakes occurred off the east coast of Kamchatka at depths between 10-90 km around latitude 52.5°N and longitude 160°E on May 16–23, 2013. The swarm occurred along the northern limit of the rupture area of the 1952 Mw 9.0 great Kamchatka earthquake, the fifth largest earthquake in the history of seismic observations. On May 24, 2013 the strongest deep earthquake ever recorded of Mw 8.3 occurred beneath the Sea of Okhotsk at a depth of 610 km in the Pacific slab of the Kamchatka subduction zone, becoming the northernmost deep earthquake in the region. The deep Mw 8.3 earthquake occurred down-dip of the shallow swarm in a transition zone between the southern deep and northern shallow segments of the Pacific slab. Several deep aftershocks followed, covering a large, laterally elongated part of the slab. We suppose that the two described earthquake sequences, the May 16–23 shallow earthquake swarm and the May 24–28 deep mainshock-aftershock series, represent a single tectonic event in the Pacific slab having distinct properties at different depth levels. A low-angle underthrusting of the shallow part of the slab recorded by the shallow earthquake swarm activated the deep part; this process induced the deep mainshock-aftershock series only three days after the swarm. The domain of the subducting slab activated by the May 2013 earthquake occurrence was extraordinarily large both down-dip and along-strike.  相似文献   

8.
根据场源不同可将地电场E分为大地电场ET和自然电场ESP。空间Sq电流系和固体潮一般被认为是大地电场ET的起源;自然电场ESP源于地下介质的物理化学作用,其局部性变化相对稳定。2013年南北地震带相继发生了芦山MS7.0地震(30.3°N,103.0°E)和岷县、漳县MS6.6地震(34.5°N,104.2°E)。两次地震周边约400 km范围内的地电场台站(成都、汉王)数据表明震前自然电场ESP出现明显的小幅度突跳或大幅度跃变,同时在时间上具有准同步性,其他地电场台站也有类似变化。基于大地电场岩体裂隙水(电荷)渗流(移动)模型,对两次地震周边自然电场ESP的变异机理进行探讨,尝试解析其物理过程。  相似文献   

9.
The Harvard CMT catalogue contains 481 shallow earthquakes that occurred between 1 January 1977 and 30 November 2005 within a broad region defined by the geographical latitude from 3°S to 14°N and by the longitude from 91°E to 102°E. There are 230 events that occurred before the great earthquake of 26 December 2004. Their surface distribution is not uniform and the source area of the 2004 great event appears as an area of seismic quiescence with a radius of about 100 km. There are 186 events that occurred between the two great earthquakes of 26 December 2004 and 28 March 2005. Practically all of them are located to the northwest from the great earthquake of 2005, that in turn was followed by 63 events, mostly located to the southeast. The cumulative seismic moment from earthquakes before the occurrence of the great event of 2004 increased rather regularly with time, with sudden increase about twenty years and two years before the occurrence of the great event. The seismic moment of earthquakes between the two great events increased rapidly during the first ten-fifteen days, then flattened out and increased slowly with time. After the great event of 2005 the seismic moment shows quiet increase during some 115 days, then sudden jump, followed by very small activity till the end of our observations. From the spatial distribution of seismic moment of earthquakes that occurred before the great event of 2004 it follows that its largest release appeared to the southeast from the great event, around the rupture area of the great earthquake of 2005. The largest release of seismic moment from earthquakes between the two great events is observed in the vicinity of the 2004 event and further up to the north. The seismic moment from earthquakes that occurred after the great event of 2005 was mostly released in its vicinity and further down to the south.  相似文献   

10.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

11.
For the Fiji-Tonga-Kermadec area and for the period from January 1977 to July 2003, the Harvard CMT catalogue lists 1022 shallow, 410 intermediate and 633 deep earthquakes of moment magnitude from 4.9 to 8.0. The magnitude threshold, above which the catalogue is complete, is 5.3–5.4, and the number of earthquakes of magnitude above this value is 691 for shallow, 329 for intermediate and 476 for deep events, respectively. The proportion of earthquakes associated with doublets and multiplets against the total number of earthquakes is approximately the same in both data sets and therefore all earthquake pairs were considered regardless of their magnitude. We investigated all the pairs of earthquakes that occurred at a centroid distance of less than 40, 60 or 90 km from each other and within a time interval of 200, 300 or 450 days, depending on their magnitude. We found 208 pairs of shallow, 31 of intermediate and 92 of deep events. To ascertain whether these earthquakes in pairs are not connected by chance, the possibility of their occurrence in an uncorrelated Poissonian catalogue was considered. It was assumed that in such a catalogue the inter-event time is exponentially distributed, the earthquake magnitude follows the Gutenberg-Richter relation, and the distribution of centroid distances between the events in pairs is controlled by its non-parametric kernel estimate. The probability of the appearance of the observed proportion of doublets of shallow earthquakes in the Poissonian catalogue was found to be very low. The low probability of occurrence in a semi-random catalogue, created by randomising centroid locations in the actual data set, also indicates major importance of the distance criterion used for a doublet specification. In general, shallow earthquakes tend to form pairs at shorter distances and within shorter time intervals than deep earthquakes. Both the distance and the time intervals do not depend on the magnitude of involved events. The largest number of pairs of deep earthquakes is observed at a depth of about 600 km, and the proportion of deep events associated with doublets against the number of all events increases with depth. From comparison of the focal mechanism of earthquakes in pairs, measured by the 3-D rotation angle, it follows that deep earthquakes forming pairs have a more diverse focal mechanism than shallow events; the rotation angle for three quarters of shallow pairs and only for about one third of deep pairs is reasonably small. The azimuth between two events forming a doublet is in about 60–65% of cases close to the strike of one of nodal planes of the first or the second event.  相似文献   

12.
利用极限时间法对云南省1970年以来Ms≥6.5 11组强地震进行h′值计算,结果显示:11组强震前出现h′值异常,表现为不同程度的大幅(平均减幅达28%)突然减小现象,即地震活动出现异常平静的现象,可成为地震预报意见的关键指标;强震前出现8次地震活动增强一平静一主震的发震模式,占73%,出现3次增强一平静一增强(短期内)一主震的发震模式,占23%;h′值量板图对强震前的地震活动平静和地震活动增强现象展现得较为清晰;通过对11组强震进行预测,预测时间约为5个月。  相似文献   

13.
Using the WKBJ approximation method we calculate the synthetic teleseismograms of P and PP waves to match the observed ones of six large Chinese earthquakes with known focal mechanisms: Tibet earthquake of July 14, 1973; Haicheng earthquake of February 4, 1975; Songpan earthquakes of August 16, 1976, August 21, 1976 and August 23, 1976 and Nignhe earthquake of November 15, 1976. The focal mechanism of the Tibet earthquake is discussed to examine the technique used in the calculation. We note that the amplitude ratios of PP and P waves (A PP/A P) have different characteristics for dip—slip events and strike—slip events within certain epicentral distances. We calculate the synthetic teleseismograms of P and PP waves for the strike—slip and dip—slip events with fault angles of 330°, 240° and 0°, focal depths of 8 km, 17 km and 24 km, at the assumed station with an azimuth of 310° and epicentral distances from 40°; to 80°. The diagrams of maximum amplitude ratios of PP and P waves (A PP/A P) versus distances are given. The possibility to use the (A PP/A P) values to give an approximate estimation for the focal mechanism type is discussed. This work may be useful for determining the focal mechanism type for those earthquakes which have only few records such as the Chinese earthquakes from the 1930s to 1960s. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 150–160, 1991.  相似文献   

14.
This paper describes a new method, single-link cluster analysis (SLC), to evaluate percursory quiescence for shallow earthquakes in sixteen subduction zones, using data from the ISC catalog. To define quiescent regions, we divided the catalog into time intervals with a durationT, overlapping byT/2. We considered all earthquakes having magnitudes larger than some magnitudeM min, lying within a specified distance of a great circle which is approximately coincident with the trench near a subduction zone. Within each time interval we connected or linked all earthquakes lying within some cutoff distanced of one another. We then projected all these links onto the great circle, and defined a region to be quiescent if it was not covered by the projection of any links. For this study,T was two years,M min wasm b =4.9, and we variedd from 100 to 400 km. We defined an earthquake as following quiescence if it occurred within two years following, and within 75 km of a quiescent zone as defined above. The primary conclusion of this study was that earthquakes with surface wave magnitudes 7.2 and greater were about 5–15% more likely to follow quiescence than were the smaller background earthquakes withm b >-4.9. A chi-squared analysis shows that this result is significant at the 99% level. In contrast, earthquakes with surface wave magnitude of 6.7 to 7.1 were no more likely to follow quiescence than were background earthquakes. Of sixteen individual regions, Central America, Japan, and Peru-Chile were the only regions where large earthquakes were more likely to occur following quiescence than were background earthquakes. For a cutoff link length of 300 km, only in Central America was the difference between large earthquakes and background earthquakes significant at the 95% level of significance. For a cutoff link length of 250 km, the significance level exceeded 95% only in Japan. The SLC method is an objective, quantitative method for evaluating large data catalogs, or for monitoring quiescence in regions where quiescence is conjectured to precede large earthquakes.  相似文献   

15.
Lunar seismicity and tectonics   总被引:1,自引:0,他引:1  
Seismic signals from 300–700 deep moonquakes and about four shallow moonquakes are detected by the long-period seismometers of two or more of the Apollo seismic stations annually. Deep-moonquake activity detected by the Apollo seismic network displays tidal periodicities of 0.5 and 1 month, 206 d and 6 a. Repetitive moonquakes from 60 hypocenters produce seismograms characteristic of each. At each hypocenter, moonquakes occur only within an active period of a few days during a characteristic phase of the monthly lunar tidal cycle. An episode of activity may contain up to four quakes from one hypocenter. Nearly equal numbers of hypocenters are active at opposite phases of the monthly cycle, accounting for the 0.5-month periodicity. The 0.5- and 1-month activity peaks occur near times of extreme latitudinal and longitudinal librations and earth-moon separation (EMS). The 206-d and 6-a periodicities in moonquake occurrence and energy release characteristics are associated with the phase variations between the librations and EMS. Because of the exact relationship between tidal phases and the occurrence of deep moonquakes from a particular hypocenter, it is possible to predict not only the occurrence times from month to month, often to within several hours, but also the magnitudes of the moonquakes from that hypocenter. The predicted occurrence of large A1 moonquakes in 1975, following a 3-a hiatus, confirms the correlation between A1-moonquake activity and the 6-a lunar tidal cycle and implies a similar resurgence for all of the deep moonquakes. Because no matching shallow moonquake signals have been identified to date, tidal periodicities cannot be identified for the individual sources. However, shallow moonquakes generally occur near the times of extreme librations and EMS and often near the same tidal phase as the closest deep moonquake epicenters. With several possible exceptations, the deep-moonquake foci located to date occur in three narrow belts on the nearside of the moon. The belts are 100–300 km wide, 1,000–2,500 km long and 800–1,000 km deep and define a global fracture system that intersects in central Oceanus Procellarum. A fourth active, although poorly defined, zone is indicated. The locations of 17 shallow-moonquake foci, although not as accurate as the deep foci, show fair agreement with the deep-moonquake belts. Focal depths calculated for the shallow moonquakes range from 0–200 km. Deep-moonquake magnitudes range from 0.5 to 1.3 on the Richter scale with a total energy release estimated to be about 1011 erg annually. The largest shallow moonquakes have magnitudes of 4–5 and release about 1015–1018 erg each. Tidal deformation of a rigid lunar lithosphere overlying a reduced-rigidity asthenosphere leads to stress and strain concentrations near the base of the lithosphere at the level of the deep moonquakes. Although tidal strain energy can account for the deep moonquakes in this model, it cannot account for the shallow moonquakes. The tidal stresses within the lunar lithosphere range from about 0.1 to 1 bar and are insufficient to generate moonquakes in unfractured rock, suggesting that lunar tides act as a triggering mechanism. The largest deep moonquakes of each belt usually occur near the same characteristic tidal phases corresponding to near minimum or maximum tidal stress, increasing tidal stress, and alignments of tidal shear stresses that correspond to thrust faulting along planes parallel to the moonquake belts and dipping 30–40°. With few exceptions, the shallow moonquakes occur at times of near minimum tidal stress conditions and increasing tidal stress that also suggest thrust faulting. The secular accumulation of strain energy required for the shallow moonquakes and implied by the uniform polarities of the deep moonquake signals probably results from weak convection. A convective mechanism would explain the close association between moonquake locations and the distribution of filled mare basins and thin lunar crust, the earth-side topographic bulge, and the ancient lunar magnetic field. The low level of lunar seismic activity and the occurrence of thrust faulting both at shallow and great depths implies that the moon is presently cooling and contracting at a slow rate.  相似文献   

16.
本文对辽东半岛南部及东侧海域的地震活动背景及特征作了分析。研究结果表明未来该区周围有发生中强地震的危险性。该区位于华北强震二维破裂网格分布的结构点附近、中强地震带空段的交汇部位;发生在1988年辽宁及其邻区有两条4级地震条带在其附近交汇;本区还存在着地震活动空区、空带和低b值异常;全国地震综合预报专家系统和综合模式识别两种方法确定该区为全国Ⅱ类地震危险区;极值分析结果也表明该区周围处于缺震状态,5—6级地震具有较高的发震概率。  相似文献   

17.
By the mathematical simulation of geotemperature field, deep quasi-stable thermal state and shallow thermal characteristics are reproduced in Sanjiang region of Yunnan. Faults are treated in two ways, 1) as constant heat source in terms ofq=μτ, that is, the quantity of frictional generated heat is constant, in order to simulate frictional heat generated by fault moving; 2) as heat conduits with high thermal conductivities to simulate such a phenomenon that there exist thermal fluids (for example, magma) in fault zones during tectonic movement. And then, through the simulation of thermal stress, the quantity (several bars to hundred bars) and the pattern of thermal stress vectors are obtained, which provides a new clue to the explanation and prediction of earthquakes. And larger tensional and shear stresses occur where the variation of geotemperature and the thickness of thermal lithosphere gradient belt. The stresses are concentrated in the temperature gradient belt. The shear belts of studied area are temperature gradient belts where the variation of the lithosphere thickness is larger and deep heat flow is high and thermal stresses concentrated. All of these may explain the facts that most of the earthquakes, hot springs occur along the fault zones. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 313–321, 1993. The study was financially supported by Chinese Natural Sciences Funds Item Ancient Tethys Tectonic Evolution in Western Yunnan and by centre for Remote sensing, Ministry of Metallurgy.  相似文献   

18.
A collection of ground‐motion recordings (1070 acceleration records) of moderate (5.1⩽ML⩽6.5) earthquakes obtained during the execution of the Taiwan Strong Motion Instrumentation Program (TSMIP) since 1991 was used to study source scaling model and attenuation relations for a wide range of earthquake magnitudes and distances and to verify the models developed recently for the Taiwan region. The results of the analysis reveal that the acceleration spectra of the most significant part of the records, starting from S‐wave arrival, can be modelled accurately using the Brune's ω‐squared source model with magnitude‐dependent stress parameter Δσ, that should be determined using the recently proposed regional relationships between magnitude (ML) and seismic moment (M0) and between M0 and Δσ. The anelastic attenuation Q of spectral amplitudes with distance may be described as Q=225 ƒ1.1 both for deep (depth more than 35 km) and shallow earthquakes. The source scaling and attenuation models allow a satisfactory prediction of the peak ground acceleration for magnitudes 5.1⩽M⩽6.5 and distances up to about 200 km in the Taiwan region, and may be useful for seismic hazard assessment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
采用CAP方法反演2010年玉树7.1级地震序列前震、主震及余震19个ML≥4.0事件的震源机制解,19个结果以走滑类型为主,前震、主震的震源机制解十分接近,反映出前震、主震之间密切的联系;震源深度集中在7~12 km,震源最浅(4.5 km)与最深(34 km)的两个余震事件具有明显的逆冲性质,表现出明显的边界特征;19个事件的震中分布在甘孜-玉树断裂北支玉树-隆宝断裂上,目前已经证明该断裂即为玉树地震的发震构造。自SE-NW沿玉树-隆宝断裂走向拉一剖面,观察震源深度沿剖面的变化情况,可看出玉树-隆宝断裂西北段震源深度要大于东南段,该段主要是余震活动的中后期,因此在地震活动的中后期,余震向地壳深部扩展,断裂累积的应变能得到更进一步的释放;P轴方位角优势分布集中在220°~230°,T轴方位优势分布集中在310°~320°,两个优势分布互相垂直性与单个事件的沙滩球应力轴一样,说明玉树地震的震源机制解类型较为简单;玉树周边地区应力场分布比较均匀,并不像汶川周边地区那么复杂,本次玉树地震为巴颜喀拉地块与羌塘块体边界处甘孜-玉树断裂应变能量的正常释放。  相似文献   

20.
We re-examine the utility of teleseismic seismic complexity discriminants in a multivariate setting using United Kingdom array data. We measure a complexity discriminant taken on array beams by simply taking the logarithm of the ratio of the P-wave coda signal to that of the first arriving direct P wave (βCF). The single station complexity discriminant shows marginal performance with shallow earthquakes having more complex signatures than those from explosions or deep earthquakes. Inclusion of secondary phases in the coda window can also degrade performance. However, performance improves markedly when two-station complexity discriminants are formed showing false alarm rates similar to those observed for network mbMs. This suggests that multistation complexity discriminants may ameliorate some of the problems associated with mbMs discrimination at lower magnitudes. Additionally, when complexity discriminants are combined with mbMs there is a tendency for explosions, shallow earthquakes and deep earthquakes to form three distinct populations. Thus, complexity discriminants may follow a logic that is similar to mbMs in terms of the separation of shallow earthquakes from nuclear explosions, although the underlying physics of the two discriminants is significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号