首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

2.
The dynamics of benthic primary production and community respiration in a shallow oligotrophic, marine lagoon (Fællestrand, Denmark) was followed for 1·5 years. The shape of the annual primary production cycle was explained primarily by seasonal changes in temperature (r2 = 0·67-0·72) and daylength (r2 = 0·63), whereas temperature almost explained all variation in benthic community respiration (r2 = 0·83-0·87). On a daily basis the benthic system was autotrophic during spring and summer supplied by 'new' and 'regenerated' nitrogen and predominantly heterotrophic during fall and winter caused by light and nutrient limitation. The linear depth-relationship between porewater alkalinity and ammonium indicated that the C:N ratio of mineralized organic matter is low in spring and summer (3-6) and high in fall and winter (9-16). This is inversely related to net primary production and thus the input of labile, nitrogen-rich algal cells. Accordingly, mineralization occurred predominantly in the upper 2-5 cm of the sediment. The pool of reactive material (microalgal cells) was estimated to account for 12% of total organic carbon in the upper 3 cm, and had an average turnover time of less than 1 month in summer. Assimilation of organic carbon by benthic animals was equivalent to about 30% of the annual gross primary production. Grazing reduced chlorophyll a concentration in the sediment during summer and spring to values 30-40% lower than in winter, but maintained a 3-4 times higher specific microalgal productivity. The rapid turnover of organic carbon and nitrogen, and important role of benthic microalgae showed that the benthic community in this oligotrophic lagoon is of a very dynamic nature.  相似文献   

3.
Nutrient and chlorophyll a concentrations and distributions in two adjoining regions of the South Atlantic Bight (SAB), Onslow Bay and nearshore Long Bay, were investigated over a 3-year period. Onslow Bay represents the northernmost region of the SAB, and receives very limited riverine influx. In contrast, Long Bay, just to the south, receives discharge from the Cape Fear River, draining the largest watershed within the State of North Carolina, USA. Northern Long Bay is a continental shelf ecosystem that has a nearshore area dominated by nutrient, turbidity and water-color loading from inputs from the river's plume. Average planktonic chlorophyll a concentrations ranged from 4.2 μg l−1 near the estuary mouth, to 3.1 μg l−1 7 km offshore in the plume's influence, to 1.9 μg l−1 at a non-plume station 7 km offshore to the northeast. Average areal planktonic chlorophyll a was approximately 3X that of benthic chlorophyll a at plume-influenced stations in Long Bay. In contrast, planktonic chlorophyll a concentrations in Onslow Bay were normally <0.50 μg l−1 at a nearshore (8 km) site, and <0.15 μg l−1 at sites located 45 and 100 km offshore. However, high water clarity (KPAR 0.10–0.25 m−1) provides a favorable environment for benthic microalgae, which were abundant both nearshore (average 58.3 mg m−2) and to at least 45 km offshore in Onslow Bay (average 70.0 mg m−2) versus average concentrations of 10–12 mg m−2 for river-influenced areas of Long Bay. This provides evidence that much of the inner shelf food web in Onslow Bay is based on benthic microalgal production, in contrast to a plankton-based food web in northern Long Bay and more southerly areas of the SAB.  相似文献   

4.
Suspended particle dynamics were investigated in the Ogeechee River Estuary during neap tide in July 1996. Samples were operationally separated into ‘ truly suspended ’ (settling velocity <0·006 cm s−1) and ‘ settleable ’ (settling velocity >0·006 cm s−1) fractions over the course of a tidal cycle to determine whether these two fractions were comprised of particles with differing biological and chemical characteristics. Total suspended sediment, organic carbon and nitrogen, chlorophyll a and phaeopigment concentrations were measured in each fraction, as well as rates of bacterial hydrolytic enzyme activity [β-1,4-glucosidase (βGase) and β-xylosidase (βXase)]. The majority of the suspended sediment (by weight) was in the truly suspended fraction; all measured parameters were largely associated with this fraction as well. When compared to the settleable material, the truly suspended material was significantly higher in % POC (5·7±0·6 vs. 3·9±1·8), % chlorophyll (0·07±0·02 vs. 0·03±0·01), % phaeopigment (0·030±0·006 vs. 0·018±0·012), and weight-specific maximal uptake rates (Vmaxper mg suspended sediment) of both enzymes (1·8±0·4 vs. 0·7± 0·2 nmol mg−1 h−1βGase and 1·1±0·3vs . 0·3±0·2 nmol mg−1 h−1βXase), providing clear evidence for a qualitative distinction between the two fractions. These results are interpreted to mean that the more organic-rich, biologically active material associated with the suspended fraction is likely to have a different fate in this Estuary, as ‘ truly suspended ’ sediments will be readily transported whereas ‘ settleable ’ sediments will settle and be resuspended with each tide. These types of qualitative differences should be incorporated into models of particle dynamics in estuaries.  相似文献   

5.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   

6.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

7.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

8.
During three icebreaker cruises in the Arctic Ocean under different sea-ice conditions in 2002, undisturbed benthic surface sediments were collected and assayed for the presence of a short-lived (t1/2=53 d), particle-reactive cosmogenic radionuclide, 7Be, that is solely derived from atmospheric deposition. Under largely ice-covered conditions in May–June 2002, we did not detect this radionuclide in benthic surface sediments, despite significant inventories present in ice-rafted snow on the overlying sea ice (mean=86.8 Bq m−2±32.0 SD; n=9). During the July–August 2002 Shelf–Basin Interactions (SBI) cruise aboard the USCGC Healy and during a simultaneous cruise of the CCGS Sir Wilfrid Laurier on the Bering and Chukchi Shelf, which occupied the same general region following retreat and dissolution of Arctic ice cover, the 7Be present in this snow as well as surface deposition on to the sea ice-free water surface was detected in many benthic surface sediments, including some as deep as 945 m in Barrow Canyon. Inventories of 7Be in sediments were as high (60 Bq m−2) as the entire decay-corrected inventory present earlier in some snow samples collected on the sea-ice cover. Other deposition indicators such as the inventories of sediment chlorophyll, sediment oxygen respiration rates and 234Th-derived export fluxes also showed post-ice melt particle deposition and vertical transport, but in most cases the 7Be deposition was not tightly correlated with these other indicators, suggesting that 7Be sedimentation may not be controlled by the same processes. Our observations indicate that materials in sea ice, including contaminants, particulate organic, and mineral matter originating from atmospheric deposition or entrained in continental shelf sediments and rafted onto sea ice, can be rapidly transported to depth. The re-distribution of these materials as sea-ice drifts and eventually melts has the potential for impacting Arctic Ocean biogeochemical cycles and contaminant concentrations in areas of the Arctic remote from the original point of deposition.  相似文献   

9.
In the context of the European OMEX Programme this investigation focused on gradients in the biomass and activity of the small benthic size spectrum along a transect across the Goban Spur from the outer Celtic Sea into Porcupine Abyssal Plain. The effects of food pulses (seasonal, episodic) on this part of the benthic size spectrum were investigated. Sediments sampled during eight expeditions at different seasons covering a range from 200 m to 4800 m water depth were assayed with biochemical bulk measurements: determinations of chloroplastic pigment equivalents (CPE), the sum of chlorophyll a and its breakdown products, provide information concerning the input of phytodetrital matter to the seafloor; phospholipids were analyzed to estimate the total biomass of small benthic organisms (including bacteria, fungi, flagellata, protozoa and small metazoan meiofauna). A new term ‘small size class biomass' (SSCB) is introduced for the biomass of the smallest size classes of sediment-inhabiting organisms; the reduction of fluorescein-di-acetate (FDA) was determined to evaluate the potential activity of ester-cleaving bacterial exoenzymes in the sediment samples.At all stations benthic biomass was predominantly composed of the small size spectrum (90% on the shelf; 97–98% in the bathyal and abyssal parts of the transect). Small size class biomass (integrated over a 10 cm sediment column) ranged from 8 g C m−2 on the shelf to 2.1 g C m−2 on the adjacent Porcupine Abyssal Plain, exponentially decreasing with increasing water depth. However, a correlation between water depth and SSCB, macrofauna biomass as well as metazoan meiofauna biomass exhibited a significantly flatter slope for the small size classes in comparison to the larger organisms.CPE values indicated a pronounced seasonal cycle on the shelf and upper slope with twin peaks of phytodetrital deposition in mid spring and late summer. The deeper stations seem to receive a single annual flux maximum in late summer. SSCB and heterotrophic activity are significantly correlated to the amount of sediment-bound pigments. Seasonality in pigment concentrations is clearly followed by SSCB and activity. In contrast to macro- and megafauna which integrate over larger periods (months/years), the small benthic size classes, namely bacteria and foraminifera, proved to be the most reactive potential of the benthic communities to any perturbations on short time scales (days/weeks). The small size classes, therefore, occupy a key role in early diagenetic processes.  相似文献   

10.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

11.
The input of river-borne sediments to the New Zealand continental shelf has been calculated for all the major rivers and basins in New Zealand. South Island yields 284 ± 40 × 106 tonnes per year of sediment from a land area of 152 977 km2 and North Island yields 105 ± 9·4 × 106 tonnes per year from a land area of 114 621 km2. Particularly high discharges are noted off the west coast of South Island and east coast of North Island and result in higher offshore sedimentation there. The data are compatible with measured sedimentation rates on the New Zealand continental shelf. The specific sediment yield from South Island is amongst the highest previously recorded.  相似文献   

12.
We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented.Concentrations of total chlorophyll a (totCHLa = chlorophyll a, CHLa + divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19'–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of <100 ng−1. These waters exhibited relatively limited pigment diversity, and the totCAR budget was dominated by photoprotecting pigments (PPCs) of which zeaxanthin (ZEA), a marker of prokaryotes (cyanobacteria and prochlorophytes), was most abundant. DvCHLa, a marker of prochlorophytes was detected in waters at temperatures >15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass.Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect.Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEA + dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.  相似文献   

13.
The effect of dissolved petroleum hydrocarbons in the environment on phytoplankton biomass measured as chlorophyll a was studied near the oil tanker route in the southern Bay of Bengal. In the transect from 5° N, 77° E to 5° N, 87° E the concentrations of dissolved petroleum hydrocarbons were negatively correlated with phytoplankton biomass, whereas in the 0° N, 87° E to 1° N, 79° E transect they were positively correlated with phytoplankton biomass. The mean petroleum hydrocarbon concentrations in the two transects were 12·12 ± 4·67 μg litre−1 and 11·23 ± 4·5 μg litre−1, respectively.It is surmised that the effect of dissolved petroleum hydrocarbons on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked with the water-soluble petroleum hydrocarbon fraction of light Arabian Crude support this.  相似文献   

14.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

15.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

16.
We analysed the alkenone unsaturation ratio (UK′37) in 87 surface sediment samples from the western South Atlantic (5°N–50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK′37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by −2° to −6°C are found in the regions of the Brazil–Malvinas Confluence (35–39°S) and the Malvinas Current (41–48°S). From the oceanographic evidence these low UK′37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK′37 temperatures. In this way, particles and sediments carrying a cold water UK′37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.  相似文献   

17.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

18.
The distribution and abundance of viable and non-viable (so-called resting eggs) embryos of the calanoid copepod Tortanus forcipatus were determined in the laboratory by the enumeration of nauplii that emerge from sediments collected in Victoria Harbor (Hong Kong). Sediment cores sliced down to a depth of 37 cm showed the highest number of viable resting eggs near the surface layer (0–5 cm). The number of viable eggs sharply decreased with sediment depth, particularly at the inner harbor stations, although diapause eggs remained viable as deep as 25 cm. 210Pb analyses of the sediments indicated that the mean egg age was 4.9 years. The egg mortality of T. forcipatus in the sediments was 0.135 year−1, or 78.22% annual egg survival, calculated by regressing ln (egg density) from sediment age. The range of horizontal distribution of viable resting eggs was 24.25 × 103–58.90 × 103 m−2, with a mean value of 36.8 × 103 m−2 over all stations. The accumulation of viable resting eggs that can persist for an extended period of time provided evidence for the existence of an egg bank of T. forcipatus in the sediments of Victoria Harbor.  相似文献   

19.
Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment–water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA;P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (rs), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (rs=0·80, P<0·0001); high concentrations of RED Fe at the sediment–water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (rs=0·58;P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment–water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm–50μm) whereas sites not influenced by riverine input were primarily percent sand (grain size >50μm). Concentrations of organic matter declined from the mouth to the foreslope of the estuary. With the exception of RED Fe, temporal variation (May vs July) was insignificant (P>0·05, three-way ANOVA). Concentrations of RED Fe recovered from the surficial sediments were in general greater in the summer vs spring months, although spring and summer values were highly correlated (Pearson Product Moment Correlation Coefficient; PPCC; R=0·89;P<0·0001). As the bioavailability of metals is dependent on sediment geochemistry, availability throughout the intertidal region will also be spatially dependent. This heterogeneity needs to be taken into account in studies addressing the impact of metals on estuarine systems.  相似文献   

20.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号