首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

2.
Abstract— Terrestrial impact structures provide field evidence for cratering processes on planetary bodies that have an atmosphere and volatiles in the target rocks. Here we discuss two examples that may yield implications for Martian craters: 1. Recent field analysis of the Ries crater has revealed the existence of subhorizontal shear planes (detachments) in the periphery of the crater beneath the ejecta blanket at 0.9–1.8 crater radii distance. Their formation and associated radial outward shearing was caused by weak spallation and subsequent dragging during deposition of the ejecta curtain. Both processes are enhanced in rheologically layered targets and in the presence of fluids. Detachment faulting may also occur in the periphery of Martian impacts and could be responsible for the formation of lobe‐parallel ridges and furrows in the inner layer of double‐layer and multiple‐layer ejecta craters. 2. The ejecta blanket of the Chicxulub crater was identified on the southeastern Yucatán Peninsula at distances of 3.0–5.0 crater radii from the impact center. Abundance of glide planes within the ejecta and particle abrasion both rise with crater distance, which implies a ground‐hugging, erosive, and cohesive secondary ejecta flow. Systematic measurement of motion indicators revealed that the flow was deviated by a preexisting karst relief. In analogy with Martian fluidized ejecta blankets, it is suggested that the large runout was related to subsurface volatiles and the presence of basal glide planes, and was influenced by eroded bedrock lithologies. It is proposed that ramparts may result from enhanced shear localization and a stacking of ejecta material along internal glide planes at decreasing flow rates when the flow begins to freeze below a certain yield stress.  相似文献   

3.
Abstract— A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.  相似文献   

4.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

5.
The formation mechanism of layered ejecta craters on Mars has remained a topic of intense debate since their discovery. In this study, we perform a global morphological analysis of Martian layered ejecta craters using Thermal Emission Imaging System (THEMIS) images and Mars Orbiter Laser Altimeter (MOLA) data. The study focuses on the ejecta morphologies and well‐defined distal rampart characteristics associated with 9945 layered ejecta craters with a diameter greater than 1.5 km distributed across the entire Martian surface. Data analysis based on the new database provides new information on the distribution and morphological details of the three major layered ejecta morphologies (single layer ejecta [SLE], double layer ejecta [DLE], and multiple layer ejecta [MLE]). Global analysis is applied to the latitudinal distribution of characteristic parameters, including the ejecta mobility, lobateness values, and onset diameter. Our survey of the distribution and characteristics of layered ejecta craters reveals that strong correlations exist between ejecta mobility and latitude, and there is a latitudinal dependence of onset diameter. Our study of Martian layered ejecta craters provides more detailed information and insights of a connection between the layered ejecta morphologies and the subsurface volatiles.  相似文献   

6.
Abstract— Although tenuous, the atmosphere of Mars affects the evolution of impact‐generated vapor. Early‐time vapor from a vertical impact expands symmetrically, directly transferring a small percentage of the initial kinetic energy of impact to the atmosphere. This energy, in turn, induces a hemispherical shock wave that propagates outward as an intense airblast (due to high‐speed expansion of vapor) followed by a thermal pulse of extreme atmospheric temperatures (from thermal energy of expansion). This study models the atmospheric response to such early‐time energy coupling using the CTH hydrocode written at Sandia National Laboratories. Results show that the surface surrounding a 10 km diameter crater (6 km “apparent” diameter) on Mars will be subjected to intense winds (?200 m/s) and extreme atmospheric temperatures. These elevated temperatures are sufficient to melt subsurface volatiles at a depth of several centimeters for an ice‐rich substrate. Ensuing surface signatures extend to distal locations (?4 apparent crater diameters for a case of 0.1% energy coupling) and include striations, thermally armored surfaces, and/or ejecta pedestals—all of which are exhibited surrounding the freshest high‐latitude craters on Mars. The combined effects of the atmospheric blast and thermal pulse, resulting in the generation of a crater‐centered erosion‐resistant armored surface, thus provide a new, very plausible formation model for high‐latitude Martian pedestal craters.  相似文献   

7.
Abstract— Approximately 130 terrestrial craters are currently known. They range up to 140 km, and perhaps as much as 200 km, in diameter and from Recent to ~2 billion years in age. The known sample, however, is highly biased to geologically young craters on the better known cratonic areas. The sample is also deficient in small (D < 20 km) craters compared to other planetary bodies. These biases are largely the result of active terrestrial geologic processes and their effects have to be considered when interpreting the record. The strength of the terrestrial cratering record lies in the availability of ground truth data, particularly on the structural and lithological nature of craters, which can be interpreted to understand and constrain large-scale impact processes. Some contributions include the definition of the concept of transient cavity formation and structural uplift during cratering events. Depths of excavation are poorly constrained, as very few terrestrial craters have preserved ejecta. Unlike their planetary counterparts, terrestrial impact craters are mostly recognized not by morphology but by the occurrence of characteristic shock metamorphic effects. Their study has led to models of shock wave attenuation and an understanding of the character and formation of various impact-lithologies, including impact melt rocks. They, in turn, aid in interpreting the nature of extraterrestrial samples, particularly samples from the lunar highlands. The recognition of diagnostic shock metamorphic effects and the signature of projectile contamination through geochemical anomalies in impact lithologies provide the basis for recognizing the impact signature in K/T boundary samples. The record also provides a basis for testing hypotheses of periodic cometary showers. Although inherently not suitable to define short wavelength periods in time due to relatively large uncertainties associated with crater ages, the current record shows no evidence of periodicity. Future directions in terrestrial impact studies will likely continue to focus on the K/T and related problems, including the recognition of other impact signatures in the stratigraphic record. Some emphasis will likely be given to the economic potential of craters and individual large structures, such as Sudbury, will provide an increasingly better understood context for interpreting planetary impact craters. To live up to the full potential of the record to constrain impact processes, however, more basic characterization studies are required, in addition to emphasis on topical areas of study.  相似文献   

8.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

9.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

10.
The ejecta blankets of impact craters in volatile‐rich environments often possess characteristic layered ejecta morphologies. The so‐called double‐layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high‐resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well‐preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock‐induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile‐rich environments, such as Ganymede, Europa, and the Earth.  相似文献   

11.
Abstract— It has been known for some time that the volume of impact melt (Vm) relative to that of the transient cavity (Vtc) increases with the magnitude of the impact event. This paper investigates the influence that this phenomenon has on the nature of terrestrial impact craters. A model of impact melting is used to estimate the volume of melt produced during the impact of chondritic projectiles into granite targets at velocities of 15, 25, and 50 km S?1. The dimensions of transient cavities formed under the same impact conditions are calculated from current crater-scaling relationships, which are derived from dimensional analysis of data from cratering experiments. Observed melt volumes at terrestrial craters are collated from the literature and are paired with the transient-cavity diameters (Dtc) of their respective craters; these diameters were determined through an established empirical relationship. The model and observed melt volumes have very similar trends with increasing transient-cavity diameter. This Vm-Dtc relationship is then used to make predictions regarding the nature of the terrestrial cratering record. In particular, with increasing size of the impact event, the depth of melting approaches the depth of the transient cavity. As a consequence, the base of the cavity, which ultimately would appear as an uplifted central structure in a complex crater, will record shock stresses that will increase up to a maximum of partial melting. Examination of the terrestrial record indicates a general trend for higher recorded shock levels in central structures at larger diameters; impact structures in the 100-km size range record partially melted and vesiculated parautochthonous target rocks in their centers. In addition, as the depth of melting approaches a depth equivalent to that attained by the base of the transient cavity, the floor of the transient cavity will have progressively less strength, with the result that cavity modification and uplift will not produce topographic central peaks. Again, the observed terrestrial record is not inconsistent with this prediction, and we offer differential melt scaling as a possible mechanism for the transition from central topographic peaks to rings with increasing crater diameter. Among other implications is the likelihood that impact basins in the 1000-km size range on the early Earth would not have the same multi-ring form as observed on the moon.  相似文献   

12.
Clark R. Chapman 《Icarus》1974,22(3):272-291
Computerized cratering-obliteration models are developed for use in interpreting planetary surface histories in terms of the diameter-frequency relations for craters classified by morphology. An application is made to a portion of the lunar uplands, revealing several episodes of blanketing, presumably due to the formation of some of the major basins.Application to Martian craters leads to the following picture of Martian cratering and obliteration history. During a probable period of intense early bombardment, craters were degraded by two processes: a depositional-type process connected with the declining cratering rate, and a process tending to flatten the largest craters (e.g., isostatic adjustment). During late stages of the early bombardment, or subsequent to it, there occurred a major relative episode of obliteration (probably atmosphere related), but it ceased concurrently with the massive (presumably volcanic) resurfacing of the cratered plains. Subsequent resurfacing episodes have occurred in the smooth plain terrains, but obliteration processes have been virtually absent in the low-latitude cratered terrains.Recent global Martian cratering interpretations of Hartmann and Soderblom are compared. Absolute cratering chronologies are only so good as knowledge of the absolute cratering flux on Mars. The crater data of Arvidson, Mutch, and Jones do not confirm the basis, whereby Soderblom requires the dominant Martian crater obliteration process to be coincident in time with the early bombardment. If the asteroidal-cometary impact flux on Mars has averaged five times the lunar flux during post-lunar-mare epochs, then the obliterative episode lasted about half a billion years and occurred about 1.5 × 109 yr ago.  相似文献   

13.
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. Topographic control of distribution, lobate and terraced margins, cross-cutting relationships, and multiple stratigraphic units are evidence for ejecta emplacement by surface flowage. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Preliminary results indicate that the mass ratio of water to melt and confining pressure control the degree of melt fragmentation (ejecta particle size) and the energy and mode of melt-ejecta dispersal. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology. Martian crater ramparts are formed when ejecta surges lose fluidizing vapors and transported particles are deposited en masse. This deposition results from flow yield strength increasing above shear stress due to interparticle friction.  相似文献   

14.
Abstract— A simple granular flow model is used to investigate some of the conditions under which ejecta may flow as a granular media. The purpose of this investigation is to provide some bounds as to when either volatiles or an atmosphere are required to explain the fluid‐like morphology of many Martian ejecta deposits. We consider the ejecta deposition process from when an ejecta curtain first strikes a target surface via ballistics and possibly flows thereafter. A new finding is that either hard‐smooth surfaces or slightly erodible surfaces allow ejecta to flow readily as a granular medium. Neither volatiles nor an atmosphere are required to initiate flow. A low friction coefficient between ejecta grains can also generate flow and would be analogous to adding volatiles to the ejecta. The presence of either a rough or a densely packed erodible surface does not permit easy ejecta flow. High friction coefficients between ejecta grain also prevent flow, while changes in the coefficient of restitution (a measure of how much energy is retained after collisions between particles) plays a minor role in the flow dynamics of ejecta. A hard smooth or a somewhat erodible surface could be generated by past fluvial activity on Mars, which can either indurate a surface, erode and smooth a surface, or generate sedimentary terrains that are fairly easy to erode. No ramparts or layered ejecta morphologies are generated by our model, but this may be because several simplifying assumptions are used in our model and should not be construed as proof that either volatiles or an atmosphere are required to form fluidized ejecta morphologies.  相似文献   

15.
From an analysis of 1173 craters possessing single (Type I) and double (Type 2) concentric ejecta deposits, Type 2 craters are found to occur most frequently in areas that have also been described as possessing periglacial features. The frequency of occurence of central peaks and wall failure (terraces plus scallops) within the craters indicate that, by analogy with previous analyses, Type 1 craters form in more fragmental targets than Type 2 craters. The maximum range of the outer ejecta deposits of Type 2 craters, however, consistently extends ~0.8 crater radii further than ejecta deposits of Type 1 craters, suggesting a greater degree of ejecta fluidization for the twin-lobed Type 2 craters. Numerous characteristics of Ries Crater, West Germany, show similarities to craters on Mars, indicating that Martian fluidized ejecta craters may be closer analogs to this terrestrial crater than are lunar craters.  相似文献   

16.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

17.
《Icarus》1987,71(2):268-286
Very high resolution Viking Orbiter images (8–17 m per pixel) have been used to investigate the morphology of Martian rampart crater ejecta blankets and the crater interiors, with the objective of identifying the fluidizing medium for the ejecta and the physical properties of the target rock. The occurrence of well-preserved, small-scale pressure ridges and scour marks, evidence for subsidence around isolated buried blocks in partially eroded ejecta lobes, and the stability of crater walls and distal ramparts argue for ground ice being the dominant state for volatiles within the target rocks at the time of impact. Rare examples of channels (190–650 m wide) on the surfaces of ejecta blankets, and on the inner walls of the crater Cerulli, indicate that in some instances liquid water was incorporated into the ejecta during its emplacement. No morphological evidence has been found to discount the idea that atmospheric effects were partially responsible for ejecta fluidization, but it is clear that these effects were not the sole reason for the characteristic lobate deposits surrounding at least some rampart craters on Mars.  相似文献   

18.
We address impact cratering on Io and Europa, with the emphasis on the origin of small craters on Europa as secondary to the primary impacts of comets on Io, Europa, and Ganymede. In passing we also address the origin of secondary craters generated by Zunil, a well-studied impact crater on Mars that is a plausible analog to impact craters on Io. At nominal impact rates, and taking volcanic resurfacing into account, we find that there should be 1.3 impact craters on Io, equally likely to be of any diameter between 100 m and 20 km. The corresponding model age of Europa's surface is between 60 and 100 Ma. This range of ages does not include a factor three uncertainty stemming from the uncertain sizes and numbers of comets. The mass of basaltic impact ejecta from Io to reach Europa is found to meet or exceed the micrometeoroid flux as a source of rock-forming elements to Europa's ice crust. To describe impact ejecta in more detail we adapt models for impact-generated spalls and Grady-Kipp fragments originally developed by Melosh. Our model successfully reproduces the observed size-number distributions of small craters on both Mars and Europa. However, the model predicts that a significant fraction of the 200-500 m diameter craters on Europa are not traditional secondary craters but are instead sesquinary craters caused by impact ejecta from Io that had gone into orbit about Jupiter. This prediction is not supported by observation, which implies that high speed spalls usually break up into smaller fragments that make smaller sesquinary craters. Iogenic basalts are also interesting because they provide stratigraphic horizons on Europa that in principle could be used to track historic motions of the ice, and they provide materials suitable to radiometric dating of Europa's surface.  相似文献   

19.
Two constraints placed upon the cratering flux at Mars by the SNC meteorites are examined: crystallization ages as a constraint on surface ages and cosmic ray exposure ages and number of impacts as a constraint on absolute rates. The crystallization ages of the SNC meteorites appear to constrain the Martian cratering rate to be 4xLunar or more if the parent lavas are in the north of Mars and the number of SNC ejecting impacts are small. If the SNCs result from a single impact that formed the Lyot basin then the cratering rate must be at least 7xLunar or higher to produce a basin age less than the SNC crystallization age because the basin ages are themselves determined by crater counting. Assuming multiple uncorrelated impacts for SNC ejection from Mars over 10 million years a cratering rate of approximately 4xLunar is also found for ejecting impacts that form craters over 12km in diameter. Therefore, both crystallization ages and ejection ages and number of impacts appear consistent with a 4xLunar cratering rate at Mars. The effect on Martian chronologies of such a high cratering rate is to place the SNC crystallization ages partly within the epoch of channel formation on Mars and to extend this liquid water epoch over much of Mars history.  相似文献   

20.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号