首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

2.
Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m).The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m-2 day-1). Conversely, fluxes measured at 300 m were similar at both sites (3.6vs. 3.7 mmol C m−2 day−1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively.For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations.POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON.Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.  相似文献   

3.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

4.
The likelihood that the carbon fluxes measured as part of the US-JGOFS field program in the equatorial Pacific ocean (EgPac) during 1992 yielded a balanced carbon budget for the surface ocean was determined. The major carbon fluxes incorporated into a surface carbon budget were: new production, particulate organic carbon (POC) and dissolved organic carbon (DOC) export, CaC03 export, C02 gas evasion, dissolved inorganic carbon (DIC) supply, and the time rate of charge. The ratio of the measured concentration gradients of DOC and DIC provided a constraint on the ratio of POC/DOC export. Uncertainties of ±30–50% for individual carbon flux measurements reduce the likelihood that a carbon balance can be measured during a JGOFS process-type study. As a benchmark, carbon fluxes were prescribed to yield a hypothetical surface carbon budget that was, on average, balanced. Given the typical errors in the individual carbon fluxes, however, there was only about a 30% chance that this hypothetical budget could be measured to be balanced to ±50%. Using this benchmark, it was determined that there was a 95 % chance that the carbon flux measurements yielded a surface DIC budget balanced (to ±50%) during El Nino conditions in boreal spring 1992, when the total organic carbon export rate was - 5 mmol C m-2 day- 1 and the POC export was 3 mmol C m−2 day−1. In boreal fall 1992, during cold period conditions, there was a 70% chance that the surface carbon DIC budget was balanced when the total organic carbon export rate was 20 mmol C m−2 day−1 and export was -13 mmol C m-2 day-'. The DOC to DIC concentration gradient ratio of - -0.15, measured in depth profiles down to 100m and in surface waters, was used as an important constraint that most (> 70%) of the organic carbon exported from the euphotic zone was POC rather than DOC. If a balanced surface DIC budget was used to test the compatibility of individual carbon fluxes measured during EgPac, then a three- to four-fold increase in total and particulate organic carbon export between spring and fall is indicated. This increase was not reflected in the POC loss rates measured by drifting sediment trap collections or estimated by234Th deficiencies coupled with the C/Th measured on suspended particles.  相似文献   

5.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

6.
Oceanographic samples were collected across the Antarctic Polar Front (APF) region in the vicinity of 60°S, 170°W during the US JGOFS program from December 1997 to March 1998. This paper reports the uptake rates of new (nitrate) and regenerated (ammonium and urea) nitrogen measured by 15N tracer techniques together with the levels of ammonium, urea-N and dissolved free amino acids (DFAAs) during December and mid-February–March. The APF was an important biological boundary, and in December rates of new (nitrate) uptake were greatest south of the APF, exceeding 10 mmol m−2 d−1 near the retreating ice edge. In February, nitrate uptake rates were an order of magnitude lower. Rates of ammonium uptake in both periods were greater in the warmer water north of the front. Nitrogen f-ratios varied from 0.50 to less than 0.05, with larger values associated with the >5 μm size fraction at the ice edge and generally lower values north of the APF. Urea was an important nitrogen source north of the APF, and lowered f-ratios there by 22% on average when included as part of total nitrogen uptake. Urea uptake was less important south of the APF. Ammonium concentrations increased dramatically south of the APF later in the season, suggesting a system dominated by regeneration. Seasonal changes in the concentrations of regenerated organic compounds such as urea and DFAAs were less obvious, although DFAAs exhibited consistent maxima in the high flow regions of the APF. A mass balance based of ammonium fluxes suggests that nitrification was significant at locations south of the APF in February. In these nitrate-replete waters, light/mixing conditions in the surface water (the Sverdrup criterion) accounted for over 50% of the variance in nitrate uptake rates. The stability responsible for higher new production south of the APF is due both to the separation of this region from the maximum zonal wind field to the north as well as to melt-water contribution from the retreating ice field. Estimated new production and exportable carbon production exceeded 500 mmol nitrate m−2 yr−1 and 40 g C m−2 yr−1, respectively, south of the APF. Thus, new production in the marginal ice zone of the Southern Ocean rivals that in coastal systems and indicates that this is an important region for export production.  相似文献   

7.
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 μM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 μM and occasionally <1.0 μM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si m−2 (range 162–793 mmol Si m−2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si m−2 d−1, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16–21 mmol Si m−2 d−1, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100–150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system.Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of 4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.  相似文献   

8.
Particle fluxes to 3100 m depth at 45°50′N, 19°30′W were measured using time-series sediment traps during a 17 month period encompassing 1989 and 1990 JGOFS spring bloom process studies in the northeast Atlantic. There was a marked intra-annual variability in fluxes of mass, particulate inorganic carbon (PIC), particulate organic carbon (POC) and opal, appearing as two major flux events in each year. In 1989, the first flux event represented the settlement of spring bloom-type material, whereas the second, in autumn, was heavily enriched in mucopolysaccharides. In 1990, in contrast, the two flux events comprised spring bloom-type material and arrived at depth at different times relative to the 1989 events. The intra- and interannual variability evident for all three biogenic components was most notable for POC: (i) the autumn 1989 event supplied twice as much POC to 3100 m as the earlier spring bloom settlement—a quite unexpected observation—and (ii) the annual average POC flux in 1989 was 3–4 times more than in 1990. A synthesis of process study datasets with sediment trap data enables an evaluation of the coupling of deep fluxes with surface-water events. Spatial variability of the 1989 deep flux events is assessed by comparing the sediment trap data reported here with those from a second site 100 km away (Honjo and Manganini,Deep-Sea Research II,40, 587–607, 1993). The timing and magnitude of the 1989 spring bloom settlement was indistinguishable in the two datasets, indicating no spatial variability in flux between these sites. In contrast, the autumn 1989 flux event was barely recorded at the second site. Given the biogeochemical importance of this latter event to deep waters, most notable in terms of its contribution to POC flux, this observation of deep-water mesoscale flux variability indicates a significant problem in determining regional carbon budgets. Construction of basin-scale budgets is a central goal of JGOFS and for this to be achieved further studies of mesoscale variability of particle flux are essential.  相似文献   

9.
Fluxes contributing to the particulate carbonate system in deep-sea sediments were investigated at the BENGAL site in the Porcupine Abyssal Plain (Northeast Atlantic). Deposition fluxes were estimated using sediment traps at a nominal depth of 3000 m and amounted to 0.37±0.1 mmol C m−2 d−1. Dissolution of carbonate was determined using flux of total alkalinity from in situ benthic chambers, is 0.4±0.1 mmol C m−2 d−1. Burial of carbonate was calculated from data on the carbonate content of the sediment and sedimentation rates from a model age based on 14C dating on foraminifera (0.66±0.1 mmol C m−2 d−1). Burial plus dissolution was three times larger than particle deposition flux which indicates that steady-state is not achieved in these sediments. Mass balances for other components (BSi, 210Pb), and calculations of the focusing factor using 230Th, show that lateral inputs play only a minor role in this imbalance. Decadal variations of annual particle fluxes are also within the uncertainty of our average. Long-term change in dissolution may contribute to the imbalance, but can not be the main reason because burial alone is greater than the input flux. The observed imbalance is thus the consequence of a large change of carbonate input flux which has occured in the recent past. A box model is used to check the response time of the solid carbonate system in these sediments and the time to reach a new steady-state is in the order of 3 kyr. Thus it is likely that the system has been perturbed recently and that large dissolution and burial rates reflect the previously larger particulate carbonate deposition rates. We estimate that particulate carbonate fluxes have certainly decreased by a factor of at least 3 and that this change has occurred during the last few centuries.  相似文献   

10.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

11.
Spring profiles of microbial production derived from the dark incorporation of tritiated leucine and tritiated thymidine in the northwest Mediterranean show an exponential decline with depth. Assuming this to represent a steady-state balance between microbial respiration and the downward flux of carbon, the downward flux is estimated as (1−/)p/b, where p is the microbial production, their gross growth efficiency and b the coefficient of exponential decline with depth. Summer profiles, ranging over about 3° of latitude and 4° of longitude, were well fitted by a two-component exponential decline, suggesting two distinct microbial substrates. Values of b for the more rapidly declining component varied between 0.01 and 0.06 m−1 according to location. In the case of the slower component, b was estimated as 0.002 m−1, and did not vary significantly over the region. Estimated fluxes of carbon at the surface are 123–335 mg m−2 d−1 for the fast and 95 mg m−2 d−1 for the slow component. Below about 200 m, carbon flux is dominated by the slow component. Flux estimates are compatible with flux estimates from sediment traps in the same region. The observed changes between the spring and summer profiles, combined with the horizontal homogeneity of the summer profiles below 200 m, are consistent with a downward transport of about 5–10 m d–1, implying a significant dispersive component to the observed fluxes.  相似文献   

12.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

13.
Particle export from the upper waters of the oligotrophic ocean may play a crucial role in the global carbon cycle. Mesoscale eddies have been hypothesized to inject new nutrients into oligotrophic surface waters, thereby increasing new production and particle export in otherwise nutrient deficient regimes. The E-Flux Program was a large multidisciplinary project designed to investigate the physical, biological and biogeochemical characteristics of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. There, we investigated particle dynamics using 210Pb–210Po disequilibrium. Seawater samples for 210Pb and 210Po were collected both within (IN) and outside (OUT) of two cyclones, Noah and Opal, at different stages of their evolution as well as from the eddy generation region. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) export fluxes were determined using water-column PC, PN, and bSiO2 inventories and the residence times of 210Po. PC and PN fluxes at 150 m ranged from 1.58±0.10 to 1.71±0.16 mmol C m−2 d−1 and 0.22±0.02 to 0.30±0.02 mmol N m−2 d−1 within Cyclones Opal and Noah. PC and PN fluxes at OUT stations sampled during both cruises were of similar magnitudes, 1.69±0.16 to 1.67±0.16 mmol C m−2 d−1 and 0.30±0.03 to 0.26±0.03 mmol N m−2 d−1. The bSiO2 fluxes within Cyclone Opal were 0.157±0.010 mmol Si m−2 d−1 versus 0.025±0.002 mmol Si m−2 d−1 at OUT stations. These results of minimal PC and PN export, but significant eddy-induced bSiO2 fluxes, agree very well with other studies that used a variety of direct and indirect methods. Thus, our results suggest that using elemental inventories and residence times of 210Po is another independent and robust method for determining particle export and should be investigated more fully.  相似文献   

14.
As part of E-Flux III cruise studies in March 2005, plankton net collections were made to assess the effects of a cyclonic cold-core eddy (Cyclone Opal) on the biomass and grazing of mesozooplankton. Mesozooplankton biomass in the central region of Cyclone Opal, an area of uplifted nutricline and a subsurface diatom bloom, averaged 0.80±0.24 and 1.51±0.59 g DW m−2, for day and night tows, respectively. These biomass estimates were about 80% higher than control (OUT) stations, with increases more or less proportionately distributed among size classes from 0.2 to >5 mm. Though elevated relative to surrounding waters south of the Hawaiian Islands (Hawai’i lee), total biomass and size distribution in Cyclone Opal were almost exactly the same as contemporary measurements made at Stn. ALOHA, 100 km north of the islands, by the HOT (Hawaii Ocean Time-series) Program. Mesozooplankton biomass and community composition at the OUT stations were also similar to ALOHA values from 1994 to 1996, preceding a recent decadal increase. These comparisons may therefore provide insight into production characteristics or biomass gradients associated with decadal changes at Stn. ALOHA. Gut fluorescence estimates were higher in Opal than in ambient waters, translating to grazing impacts of 0.11±0.02 d−1 (IN) versus 0.03±0.01 d−1 (OUT). Over the depth-integrated euphotic zone, mesozooplankton accounted for 30% of the combined grazing losses of phytoplankton to micro- and meso-herbivores in Opal, as compared to 13% at control stations. Estimates of active export flux by migrating zooplankton averaged 0.81 mmol C m−2 d−1 in Cyclone Opal and 0.37 mmol C m−2 d−1 at OUT stations, 53% and 24%, respectively, of the carbon export measured by passive sediment traps. Migrants also exported 0.18 mmol N m−2 d−1 (117% of trap N flux) in Cyclone Opal compared to 0.08 mmol N m−2 d−1 (51% of trap flux) at control stations. Overall, the food-web importance of mesozooplankton increased in Cyclone Opal both in absolute and relative terms. Diel migrants provided evidence for enhanced export flux in the eddy that was missed by sediment trap and 234Th techniques, and migrant-mediated flux was the major export term in the observed bloom-perturbation response and N mass balance of the eddy.  相似文献   

15.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

16.
Using data collected during cruises of the JGOFS equatorial Pacific Study in March/April and October of 1992 at the equator (140°W), we examine the downward transport of carbon by three size classes of die] migrant mesozooplankton (200–500 gm, 500–1000 μm and 1000–2000 gm). In addition to respiratory carbon flux, we consider the flux due to mortality of migrators below the euphotic zone. Diel migrant mesozooplankton biomass was estimated from the difference between nighttime and daytime biomass within the euphotic zone. Except for a four-day period early in the March/April cruise, mesozooplankton nighttime biomass was significantly larger than daytime biomass within the euphotic zone during both cruises. We estimate that the downward flux of carbon from the euphotic zone due to mesozooplankton die] vertical migrators was an average of 0.6 mmol Cm−2 d−1 and 1.1 mmol C m−2 d−1 during the March/April and October cruises, respectively. Addition of this flux to the gravitational particle sinking flux estimated from234Th measurements during the same period results in a 31 % increase in the carbon export flux from the euphotic zone in the equatorial Pacific during the March/April cruise and a 44% increase in the October cruise. The migratory flux is strongly dependent on whether feeding takes place below the euphoric zone, the length of time migrators spend in the deep waters, and the mortality rate of migrators.  相似文献   

17.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

18.
Sinking particles were collected every 4 h with drifting sediment traps deployed at 200 m depth in May 1995 in a 1-D vertical system during the DYNAPROC observations in the northwestern Mediterranean sea. POC, proteins, glucosamine and lipid classes were used as indicators of the intensity and quality of the particle flux. The roles of day/night cycle and wind on the particle flux were examined. The transient regime of production from late spring bloom to pre-oligotrophy determined the flux intensity and quality. POC fluxes decreased from, on average, 34 to 11 mg m−2 d−1, representing 6–14% of the primary production under late spring bloom conditions to 1–2% under pre-oligotrophic conditions. Total protein and chloroplast lipid fluxes correlated with POC and reflected the input of algal biomass into the traps. As the season proceeded, changes in the biochemical composition of the exported material were observed. The C/N ratio rose from 7.8 to 12. Increases of serine (10–28% of total proteins), total lipids (7–9 to 14–28% of POC) and reserve lipids (1–5 to 5–22% of total lipids) were noticeable, whereas total protein content in POC decreased (20–27 to 18–7%). N-acetyl glucosamine, a tracer of fecal pellet flux, showed that zooplankton grazing was a major vector of downward export during the decaying bloom. Against this background pattern, episodic events specifically increased the flux, modifying the quality and the settling velocity of particles. Day/night signals in biotracers (POC, N-acetyl glucosamine, protein and chloroplast lipids) showed that zooplankton migrations were responsible for sedimentation of fresh material through fast sinking particles (V=170–180 m d−1) at night. Periodic signatures of re-processed material (high lipolysis and bacterial biomass indices) suggested that other zooplankton fecal pellets or small aggregates, probably of lower settling velocities (V<170 m d−1), contributed to the flux during calm periods. At the beginning of the experiment, during the development of a prymnesiophyte bloom in the upper layers, the sterol signal with no periodicity enabled us to estimate high particle settling velocities (⩾600 m d−1) likely related to large aggregate formation. A wind event increased biotracer fluxes (POC, protein, chloroplast lipids). The rapid transmission of surface signals through extremely fast sinking particles could be a general feature of particle fluxes in marine areas unaffected by horizontal advection.  相似文献   

19.
Biogenic barium, mostly in the barite (BaSO4) form, has been proposed as a tracer for export production in the ocean. Here we report on biogenic barium (Baxs) and particulate organic carbon (POC) fluxes from sediment traps deployed at the DYFAMED site in the Northwestern Mediterranean Sea. Baxs fluxes display average values of 37 ± 45 and 50 ± 58 μg/m2/d at 200 and 1000 m respectively, and are linearly correlated to POC fluxes (mean values of 7.9 ± 9.3 and 6.8 ± 6.8 mg C/m2/d at 200 and 1000 m). Export production estimates, calculated using published Baxs- or POC-based algorithms, all fall below or close to the lower limit of potential export values proposed in the literature. This work clearly demonstrates the usefulness of Baxs as a tracer of oceanic export production in the Northwestern Mediterranean Sea. However, development of a quantitative export production proxy requires a clear understanding of the underlying cause(s) for the observed spatial variations in the relationship between Baxs and POC fluxes. The present study confirms that the processes leading to barite formation differ between margin and open-ocean sites and probably account for much of the regional variability in the POC/Baxs ratio.  相似文献   

20.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号