首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Precambrian granitoid rocks occurring within a 44,000 km2 area of the western Arabian Shield are subdivided on the basis of geology and petrology into older (820 to 715 Ma) and younger (686 to 517 Ma) assemblages. The older assemblage contains major complexes which can be assigned to either one of a granodioritic or trondhjemitic petrologic association. The earliest granitoid rocks are trondhjemitic tonalites (trondhjemite association), depleted in Ba, Ce, F, La, Li, Nb, Rb, Y and Zr compared to granitoids of the slightly younger granodiorite association, which are related to a calcic, calc-alkaline suite of rocks ranging in composition from gabbro through monzogranite. The plutonic rocks of the older assemblage were probably emplaced in the cores of contemporary island arcs.The younger plutonic assemblage is dominated by three, geochemically distinct, coeval granitic associations: the alkali granite, alkali-feldspar granite and monzogranite associations. The alkali granite association is composed of perthite granites (alkali granites and genetically related alkali-feldspar granites). Rocks of this association are marginally peralkaline or metaluminous and are characterized by low contents of Ba, Co, Li, Rb, Sc and Sr, and high contents of Be, Cu, F, REE, Nb, Sn, Y, Zn and Zr. The alkali-feldspar granite association is mainly composed of alkali-feldspar granites and syenogranites. Rocks of this association are marginally peraluminous or metaluminous and contain low Ba, Sr, and high F, Rb, Sn, Th and U. The monzogranite association consists mainly of monzogranites and granodiorites. Rocks of this association are peraluminous or marginally metaluminous and have the highest contents of Ba, Cu, Co, Li, Sc, Sr, Ta, and V, and the lowest contents of REE, Nb, Rb, Sn, Th, U, Y, Zn and Zr of the three granitic associations.These voluminous granitic magmas, together with the felsic component of a coeval sequence of bimodal volcanic rocks, are partial melts of the earlier island arc terrain produce during a prolonged fusion event. Subsolvus, highca granites of the monzogranite association have I-type features and represent partial melts of previously unfused crust, while low-Ca perthite granites of the alkali granite and alkali-feldspar granite associations have A-type features and represent partial melts of previously fused crust.This type of petrogenetic model can account for much of the petrologic diversity of the Pan-African granitic terrain of the Arabian Shield.  相似文献   

2.
Geochemistry of the Adamello massif (northern Italy)   总被引:2,自引:0,他引:2  
The Tertiary Adamello massif, outcropping over an area of more than 550 km2 in the southern Alps (northern Italy) is composed mainly of granitoid rocks (granodiorite, tonalite, quartz diorite) with minor amounts of diorite and gabbro. The major and trace element composition of these rocks is comparable to calc-alkaline volcanic rocks of continental margins. The granitoid rocks display spatial and temporal variations in their composition, particularly in Na, P, Sr, La, Nb and Y contents and 87Sr/86Sr ratios. The variations were probably produced by concurrent contamination/wall-rock assimilation and fractional crystallization of high-alumina basaltic magma.  相似文献   

3.
The Ascutney Mountain complex of eastern Vermont, USA, is a composite epizonal pluton of genetically related gabbro to granite intrusives. Nd isotopic data are reported for mafic rocks, granites, and nearby country rock. The parental mafic magma producing the complex 122 m.y. ago had 87Sr/86Sr=0.7039, 143Nd/144Nd=0.512678 ( Nd=+3.8) and 18O=6.1, indicating a mantle source with time-integrated lithophile element depletion. Uniform initial radiogenic isotope ratios for granites, which are undistinguishable from those for the most primitive gabbro, suggest that the granite magma evolved from the mafic magma without crustal contamination and that the increase in 18O, to about 7.8, is the result of fractional crystallization. Mafic rocks show a large range in initial 143Nd/144Nd ratio, from about 0.51267 to 0.51236 ( Nd= +3.7 to –2.5), which is correlated with elevated 87Sr/86Sr ratios and 18O. These data substantiate the production of mafic lithologies by fractional crystallization of the parental magma accompanied by assimilation of up to about 50% crust. The local country rocks include gneiss and schist and assimilation involved representatives of both rock types. The isotopic and chemical relationships preclude derivation from a single batch of magma undergoing contamination and indicate that a large magma body at depth evolved largely by fractionation with batches of melt issued from this chamber being variably contaminated at higher levels or at the level of emplacement.The Precambrian gneisses of the Chester dome and overlying lower Paleozoic schists have essentially identical Nd isotope systematics which suggest a crustal formation age of about 1.6. b.y. The parental sediments for the schists were apparently derived from a protolith similar to the gneissic basement without appreciable Sm/Nd fractionation.  相似文献   

4.
This paper deals with barite from stratiform, karst, and vein deposits hosted within Lower Paleozoic rocks of the Iglesiente-Sulcis mining district in southwestern Sardinia. For comparison sulfates from mine waters are studied. Stratiform barite displays 34S=28.8–32.1, 18O=12.7–15.6, and 87Sr/86Sr=0.7087, in keeping with an essentially Cambrian marine origin of both sulfate and strontium. Epigenetic barite from post-Hercynian karst and vein deposits is indistinguishable for both sulfur and oxygen isotopes with 34S=15.3–26.4 and 18O=6.6–12.5; 87Sr/86Sr ratios vary 0.7094–0.7140. These results and the microthermometric and salinity data from fluid inclusions concur in suggesting that barite formed at the site of mineralization by oxidation of reduced sulfur from Cambrian-Ordovician sulfide ores in warm, sometimes hot solutions consisting of dilute water and saline brine with different 18O values. The relative proportion of the two types of water may have largely varied within a given deposit during the mineralization. In the karst barite Sr was essentially provided by carbonate host rocks, whereas both carbonate and Lower Paleozoic shale host rocks should have been important sources for Sr of the vein barite. Finally, 34S data of dissolved sulfate provide further support for the mixed seawater-meteoric water composition of mine waters from the Iglesiente area.  相似文献   

5.
The Closepet batholith in South India is generally considered as a typical crustal granite emplaced 2.5 Ga ago and derived through partial melting of the surrounding Peninsular Gneisses (3.3 to 3.0 Ga). In the field, it appears as a composite batholith made up of at least two groups of intrusions. (a) An early SiO2-poor group (clinopyroxene quartz-monzonite and porphyritic phyritic monzogranite) is located in the central part of the batholith. These rocks display a narrow range in both initial 87Sr/86Sr (0.7017–0.7035) and Nd(–0.9to –4.1). (b) A later SiO2-rich group (equigranular grey and pink granites) is located along the interface between the SiO2-poor group and the Peninsular Gneisses. They progressively grade into migmatised Peninsular Gneisses, thus indicating their anatectic derivation. Their isotopic characteristics vary over a wide range (87Sr/86Sr ratios=0.7028–0.7336 and Nd values from-2.7 to-8.3, at 2.52 Ga). Field and geochronological evidence shows that the two groups are broadly contemporaneous (2.518–2.513 Ga) and mechanically mixed. This observation is supported by the chemical data that display well defined mixing trends in the Sr vs Nd and elemental variation diagrams. The continuous chemical variation of the two magmatic bodies is interpreted in terms of interaction and mixing of two unrelated end-members derived from different source regions (enriched peridotitic mantle and Peninsular Gneisses). It is proposed that the intrusion of mantle-derived magmas into mid-crustal levels occurred along a transcurrent shear zone; these magmas supplied additional heat and fluids that initiated anatexis of the surrounding crust. During this event, large-scale mixing occurred between mantle and crustal melts, thus generating the composite Closepet batholith. The mantle-derived magmatism is clearly associated with granulite facies metamorphism 2.51±0.01 Ga ago. Both are interpreted as resulting from a major crustal accretion event, possibly related to mantle plume activity.  相似文献   

6.
Geological mapping, petrography, geochemistry, and isotope studies enable the division of the Pelotas Batholith into six granitic suites: Pinheiro Machado (PMS), Erval (ES), Viamão (VS), Encruzilhada do Sul (ESS), Cordilheira (CS), and Dom Feliciano (DFS). The rocks of the PMS show a large compositional range (granite through granodiorite to tonalite), and the suite is considered pre- to syncollisional. Other suites show restricted compositional variations (granite to granodiorite) and are late to postcollisional. In general, the suites are metaluminous to slightly peraluminous (PMS, ES, and VS) or peraluminous (CS) or have alkaline tendencies (ESS and DFS). The magmatic evolution corresponds to high-K calc-alkaline to alkaline magmatism. The suites are enriched in K, Rb, and REE compared with rocks of typical calc-alkaline series. Initial 87Sr/86Sr ratios vary from 0.705 to 0.716, except in the CS, where they attain values of 0.732–0.740. Sm–Nd TDM model ages vary between 0.98 and 2.0 Ga, with initial εNd values ranging from −0.3 to −10. U–Pb zircon dates of samples from PMS, VS, and ESS suggest an age between 0.63 and 0.59 Ga for magmatism. Rb–Sr dates of samples of alkaline granites from DFS present ages between 0.57 and 0.55 Ga. The main tectonic controls of the magmatism of the Pelotas Batholith are high-dip sinistral shear zones.  相似文献   

7.
Fortyfive new K-Ar ages and Sr isotope data on amphiboles, biotites, clinopyroxenes and whole rock samples from subvolcanic dykes south of the Tauern Window establish, that alkalibasaltic dykes were intruded 30 m.y. ago and shoshonitic volcanism occured between 30 and 24 m.y. ago. Two calc-alkaline rocks of high-potassium composition yielded ages of 40 and 26 m.y. resp., a spread which may or may not be real. Calc-alkaline dykes with medium and low potassium contain excess argon and are hence undatable. Alkalibasaltic dykes have 87Sr/86Sr ratios of 0.7056–0.7070, shoshonitic rocks 0.7075–0.7133, potassium rich calc-alkaline dykes 0.7077–0.7100. 87Sr/86Sr of all other calc-alkaline rocks scatter between 0.7074 and 0.7150. Sr data indicate that dykes studied do not represent closed Sr systems, but that Sr characteristics result from selective strontium assimilation en route to surface. Primary Sr isotopic ratios of alkalibasaltic dykes point to an origin of these rocks in enriched sub-continental upper mantle. The source region of shoshonitic and high-potassium calcalkaline rocks could have 87Sr/86Sr around 0.707, which is assigned to the input of a component rich in alkalies, LREE and LIL elements. Genetic relationships with other Tertiary magmatites of similar geotectonic position are explained in terms of plate tectonic models of the Eastern Alps.  相似文献   

8.
The post-collisional magmatism of the Junggar Terrane is characterized by intrusion of large amounts of granitoids and minor basic/ultrabasic rocks. The granitoids comprise two magmatic suites: calc-alkaline and alkaline, which were emplaced contemporaneously at about 294 Ma. The calc-alkaline rocks are typically sodium-rich (Na2O/K2O=1.1–3.5) and metaluminous (A/NK >1.0, A/CNK=0.78–1.04). They show mildly fractionated REE patterns ((La/Yb)N<15) and spidergrams with strong depletion of Nb, Ti and, to a lesser extent, Sr. The alkaline granites have high contents of SiO2 (75–78%), alkalis, Nb, HREE, Y, Sn, F and high FeO/MgO ratios and huge Sr and Eu depletion in the spidergrams. Moreover, they display characteristic tetrad REE patterns and non-CHARAC trace element behaviour. The two rock suites have similar initial Nd and Sr isotopic compositions, with Nd(T) in the range +5.2 to +7.1 and ISr mostly in the range 0.7031–0.7041. This points to a predominance of juvenile components in their sources. The calc-alkaline rocks are most probably derived by dehydration-melting of a basic lower crust leaving behind a granulite residue. The process was probably triggered by underplating of mantle-derived basic magmas in an extensional regime. The alkaline granites are considered to have formed by differentiation of the calc-alkaline granitoids. Our study argues for a juvenile continental crust for the basement of the Junggar terrane, which is likely dominated by early Paleozoic oceanic crust and arc complex that were deeply buried during the late Paleozoic subduction and accretion.  相似文献   

9.
Voluminous granitic intrusions are distributed in the West Junggar, NW China, and they can be classified as the dioritic rocks, charnockite and alkali-feldspar granite groups. The dioritic rocks (SiO2 = 50.4–63.8 wt.%) are calc-alkaline and Mg enriched (average MgO = 4.54 wt.%, Mg# = 0.39–0.64), with high Sr/Y ratios (average = 21.2), weak negative Eu (average Eu/Eu = 0.80) and pronounced negative Nb–Ta anomalies. Their Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7035–0.7042, εNd(t) = 4.5–7.9, εHf(t) = 14.1–14.5) show a depleted mantle-like signature. These features are compatible with adakites derived from partial melting of subducted oceanic crust that interacted with mantle materials. The charnockites (SiO2 = 60.0–65.3 wt.%) show transitional geochemical characteristics from calc-alkaline to alkaline, with weak negative Eu (average Eu/Eu = 0.75) but pronounced negative Nb–Ta anomalies. Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7037–0.7039, εNd(t) = 5.2–8.0, εHf(t) = 13.9–14.7) also indicate a depleted source, suggesting melts from a hot, juvenile lower crust. Alkali-feldspar granites (SiO2 = 70.0–78.4 wt.%) are alkali and Fe-enriched, and have distinct negative Eu and Nb–Ta anomalies (average Eu/Eu = 0.26), low Sr/Y ratios (average = 2.11), and depleted Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7024–0.7045, εNd(t) = 5.1–8.9, εHf(t) = 13.7–14.2). These characteristics are also comparable with those of rocks derived from juvenile lower crust. Despite of the differences in petrology, geochemistry and possibly different origins, zircon ages indicate that these three groups of rocks were coevally emplaced at ~ 305 Ma.A ridge subduction model can account for the geochemical characteristics of these granitoids and coeval mafic rocks. As the “slab window” opened, upwelling asthenosphere provided enhanced heat flux and triggered voluminous magmatisms: partial melting of the subducting slab formed the dioritic rocks; partial melting of the hot juvenile lower crust produced charnockite and alkali-feldspar granite, and partial melting in the mantle wedge generated mafic rocks in the region. These results suggest that subduction was ongoing in the Late Carboniferous and, thus support that the accretion and collision in the Central Asian Orogenic Belt took place in North Xinjiang after 305 Ma, and possibly in the Permian.  相似文献   

10.
A banded amphibolite sequence of alternating ultramafic, mafic (amphibolite) and silicic layers, tectonically enclosed within Variscan migmatites, outcrops at Monte Plebi (NE Sardinia) and shows similarities with leptyno-amphibolite complexes. The ultramafic layers consist of amphibole (75–98%), garnet (0–20%), opaque minerals (1–5%) and biotite (0–3%). The mafic rocks are made up of amphibole (65–80%), plagioclase (15–30%), quartz (0–15%), opaque minerals (2–3%) and biotite (0–2%). The silicic layers consist of plagioclase (60–75%), amphibole (15–30%) and quartz (10–15%). Alteration, metasomatic, metamorphic and hydrothermal processes did not significantly modify the original protolith chemistry, as proved by a lack of K2O-enrichment, Rb-enrichment, CaO-depletion, MgO-depletion and by no shift in the rare earth element (REE) patterns. Field, geochemical and isotopic data suggest that ultramafic, mafic and silicic layers represent repeated sequences of cumulates, basic and acidic rocks similar to macrorhythmic units of mafic silicic layered intrusions. The ultramafic layers recall the evolved cumulates of Skaergaard and Pleasant Bay mafic silicic layered intrusions. Mafic layers resemble Thingmuli tholeiites and chilled Pleasant Bay mafic rocks. Silicic layers with Na2O: 4–6 wt%, SiO2: 67–71 wt% were likely oligoclase-rich adcumulates common in many mafic silicic layered intrusions. Some amphibolite showing a strong Ti-, P-depletion and REE-depletion are interpreted as early cumulates nearly devoid of ilmenite and phosphates. All Monte Plebi rocks have extremely low Nb, Ta, Zr, Hf content and high LILE/HFSE ratios, a feature inherited from the original mantle sources. The mafic and ultramafic layers show slight and strong LREE enrichment respectively. Most mafic layer samples plot in the field of continental tholeiites in the TiO2–K2O–P2O5 diagram and are completely different from N-MORB, E-MORB and T-MORB as regards REE patterns and Nd, Sr isotope ratios but show analogies with Siberian, Deccan and proto-Atlantic rift tholeiites. Comparisons with Thingmuli, Skaergaard and Kiglapait rocks and with experimental data suggest that the Monte Plebi intrusion was an open-to-oxygen system with fO2 FMQ. Mafic and ultramafic samples yielded Nd(460)=+0.79 /+3.06 and 87Sr/86Sr=0.702934–0.703426, and four silicic samples Nd(460)=–0.53/–1.13; 87Sr/86Sr=0.703239–0.703653. Significant differences in Nd isotope ratios between mafic and silicic rocks prove that both groups evolved separately in deeper magma chambers, from different mantle sources, with negligible interaction with crustal material, and were later repeatedly injected within a shallower magma chamber. The spectrum of Sr and Nd isotope data is consistent with a slightly enriched mantle metasomatized during an event earlier than 460 Ma. The metasomatising component was represented by alkali-Th-rich fluids of crustal origin rather than by sedimentary materials, able to modify alkali and Sr–Nd isotope systematics. Monte Plebi layered amphibolites might represent the first example of a strongly metamorphosed fragment of an early Paleozoic mafic silicic layered intrusion emplaced in a thinning continental crust and then tectonically dismembered by Variscan orogeny.  相似文献   

11.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

12.
High-Al gabbro represents one of the latest phases of magmatism in the 1.43 Ga Laramie anorthosite complex (LAC) in southeastern Wyoming. This lithology, which is mineralogically and geochemically the most primitive in the LAC, forms dikes and small intrusions that cross cut monzonitic and anorthositic rocks. High-Al gabbro is characterized by high Al2O3 (15–19 wt%), REE patterns with positive europium anomalies (Eu/Eu*=1.2–3.8), and the lowest initial 87Sr/86Sr (as low as 0.7033) and highest initial Nd (up to +2) in the LAC. Their Sr and Nd isotopic characteristics indicate a mantle origin followed by crustal assimilation during ascent. Intermediate plagioclase (An50–60) and mafic silicate (Fo54–63) compositions suggest that they are not primary mantle melts and that they differentiated prior to final emplacement. High-Al gabbros of the LAC are similar compositionally to gabbros from several other Proterozoic anorthosite complexes, including rocks from the Harp Lake complex and the Hettasch intrusion in Labrador and the Adirondack Mountains of New York. These gabbros are considered to be parental to their associated anorthositic rocks, a theory that is supported by recent experimental work. We interpret LAC high-Al gabbros to represent mantle-derived melts produced by the differentiation of a basaltic magma in an upper mantle chamber. Continued evolution of this magma eventually resulted in the formation of plagioclase-rich diapirs which ascended to mid-crustal levels and formed the anorthositic rocks of the LAC. Because these gabbros intrude the anorthositic rocks, they do not represent directly the magma from which anorthosite crystallized and instead are younger samples of magma formed by identical processes.  相似文献   

13.
18O/16O,87Sr/86Sr and chemical analyses were made on 39 lavas and ignimbrites from M. Vulsini, the most northerly district of the K-rich Quaternary Roman Province of Italy. These rocks belong mainly to the undersaturated, leucite-bearing (High-K) series, but also included are samples from the less abundant, SiO2-saturated, hypersthene-(quartz)-normative (Low-K) series. The effects of post-eruption alteration on the 18O of these lavas were taken into account by analyzing phenocrysts or by using the extrapolation procedure developed for the nearby Alban Hills center. Because of the high Sr contents (500–2400 ppm), the87Sr/86Sr ratios of these rocks were little affected by such alteration processes. The M. Vulsini volcanics have Sr- and O-isotopic ratios much less uniform, and on the average much higher, than at any of the other volcanic centers of the province:87Sr/86Sr=0.7097 to 0.7168; 18O=6.5 to 13.8. This is attributable to the fact that M. Vulsini is one of the sites of greatest crustal assimilation and hybridism between K-rich Roman magmas and SiO2-rich Tuscan anatectic magmas. The High-K series parent magmas at M. Vulsini had a very high and uniform87Sr/86Sr=0.7102 to 0.7104, and a somewhat more variable 18O=+5.5 to +7.5; they must have come from an upper mantle source region previously metasomatically enriched in87Sr and LIL elements. These18O/16O and87Sr/86Sr ratios are identical to the parent magma at the Alban Hills, 120 km to the south, where Low-K lavas are absent. Low-K series magmas at M. Vulsini originated from a lower-87Sr source region than the High-K series (<0.7097); a similar relationship is observed in all of the other localities in Italy where the two magma series coexist.Contribution No. 4167, Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

14.
内蒙古狼山山脉西侧分布有大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世角闪辉长岩、花岗闪长岩体出露于潮格温都尔镇西侧。角闪辉长岩体呈岩滴状产出,被花岗闪长岩体侵入,LA-ICP-MS锆石U-Pb年龄显示,角闪辉长岩的~(206)Pb/~(238)U加权平均年龄为329.0±2.3 Ma,花岗闪长岩的~(206)Pb/~(238)U加权平均年龄为331.1±0.9 Ma~330.0±4.2 Ma。花岗闪长岩暗色矿物以角闪石为主,富钠(Na2O=3.48%~4.46%),高钠钾比值(Na2O/K2O=1.03~2.39),钙碱性系列,P2O5-SiO_2之间存在较好的负相关性,岩石地球化学特征具Ⅰ型花岗岩的特点。Hf同位素及元素地球化学特征指示了角闪辉长岩及花岗闪长岩均来自于受地壳混染的亏损地幔,为同源岩浆演化的产物。角闪辉长岩及花岗闪长岩稀土元素配分型式一致,均为轻稀土元素富集,重稀土元素亏损,具弱的负Eu异常;角闪辉长岩富集Ba、Sr,亏损Nb、Ta、Zr、Hf;花岗闪长岩富集大离子亲石元素Rb、K、Pb、Sr,不同程度地亏损高场强元素Nb、Ta、P、Ti,总体反映了岩浆弧的地球化学特征。结合区域地质背景,早石炭世狼山地区侵入岩岩石组合为角闪辉长岩(闪长岩)+石英闪长岩+花岗闪长岩,认为狼山地区早石炭世处于大陆边缘弧构造背景。  相似文献   

15.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

16.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   

17.
Two different contamination processes have been identified as having been operative in the genesis of a plutonic suite: initial contamination of a mantle source, and subsequent crustal contamination of uprising partial melts from the mantle. These processes are indicated by a detailed analyses of Nd, Sr, and oxygen isotopes together with major-and trace-elements of the 32–30 Ma calc-alkaline Bergell intrusion. This intrusion is located at the suture of the Alpine continental collision zone and contains rock types capable of discriminating between mantle and intracrustal processes. A range from basaltic-andesitic dykes in the surrounding country rocks, cumulitic hornblendites, gabbros, tonalite, granodiorite and lamprophyres, to pegmatites and aplites, is exposed in this single intrusion. The results of REE modelling and isotopic compositions of the basic members suggest that the cumulates were fractionated from a picrobasaltic liquid originating by partial melting of enriched subcontinental mantle (Nd=+4). Increases in 87Sr/86Sr (0.7055) and 18O(+6.7) in these samples relative to the mantle array and compositions of other Periadriatic intrusions are most likely the result of an initial contamination of the mantle source by dehydration or partial melting of altered subducted oceanic crust. Slight differentiation of such a picrobasaltic liquid produced the basaltic-andesitic dykes. Simultaneous fractional crystallization and contamination of the uprising magma by continental crust produced crustal isotopic signatures which increase with acidity to values of (Nd=-7.6), 87Sr/86Sr=0.716 and 18O=+10. The crustal imprint and LREE enrichment in the dominating tonalite increase with decreasing crystallization depth which indicates that the tonalites were emplaced in several distinct batches with different degrees of contamination. Shoshonitic lamprophyres, which intruded into the partly solidified granodiorite, were generated in a deep, strongly contaminated mantle source. The posttectonic 26 Ma Novate leucogranite is not cogenetic with the main Bergell body, but rather formed from a predominantly crustal source. If the described features are indeed due to mantle source contamination processes, which are well known for volcanic arcs, it must be concluded that these may also play a significant role in the genesis of calcalkaline plutonic suites.  相似文献   

18.
The Sr-Nd isotopic data for selected granitoids of the Central Bohemian Pluton show a broad negative correlation with the total range of (87Sr/86Sr)330 = 0.7051–0.7129 and Nd 330 = +0.2 to –8.9. The older intrusions have more depleted Sr-Nd compositions and calc-alkaline geochemistry (Sázava suite), whereas the younger intrusions shift towards K-rich calc-alkaline (Blatná suite) and shoshonitic rocks (íany and ertovo bemeno suites) with more evolved isotopic signatures. The distribution of the data is interpreted as reflecting a diversity of sources and processes, rather than a single progressive crustal contamination trend. The Sázava suite could have originated by partial melting of metabasites, or of a mantle source with an isotopic composition close to bulk earth, or by hybridization of crustally-derived tonalitic and mantle-derived magmas. Variation within the Blatná suite is modelled by mixing between a moderately enriched [(87Sr/86Sr)330 0.708, Nd 330 –3] mantle component with either an isotopically evolved metasedimentary component, or with more evolved magmas of the suite. The íany suite was most probably produced by partial melting of peraluminous lithologies, possibly of the adjacent Moldanubian unit. The ertovo bemeno suite evolved from strongly enriched mantle-derived magmas [(87Sr/86Sr)3300.7128, Nd 330 –7], either through closed-system fractional crystallization or interaction with magma corresponding to leucogranites of the Central Bohemian Pluton.  相似文献   

19.
在内蒙牙克石地区发育两种不同构造属性的岩石组合:一类为乌奴耳-头道桥蛇绿混杂岩,另一类为晚古生代弧属性侵入岩。乌奴耳-头道桥蛇绿混杂岩由辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩组成;地球化学特征显示基性岩类属于拉斑玄武岩系列,具有相似的稀土和原始地幔标准化配分模式,与N-MORB的特征类似,不具有Nb-Ta负异常,Nb/Nb~*值平均1;构造环境判别图显示该蛇绿混杂岩可能形成于扩张脊。晚古生代弧属性侵入岩出露于白井山、乌尔其汗,由中基性单元(辉长岩、辉长闪长岩和石英闪长岩)和酸性单元(花岗闪长岩和二长花岗岩)组成;地球化学特征显示中基性单元和酸性单元属于钙碱性岩系列,富集LREEs和LILEs,具有Nb-Ta负异常,高Sr、Sr/Y值,低HREEs和Y,Eu异常不明显;酸性单元显示埃达克质岩的地球化学特征。乌奴耳-头道桥蛇绿混杂岩可能形成于新元古代,与头道桥蓝片岩、吉峰蛇绿混杂岩、新林蛇绿岩构成一条重要的缝合带,暗示本区古洋盆的存在。晚古生代弧属性侵入岩中,辉长岩的结晶年龄为326±1.9Ma,花岗闪长岩的结晶年龄为323.7±1.9Ma;微量元素的组成特征显示,中基性单元和酸性单元的形成与早石炭世洋壳板片的俯冲作用有关,暗示兴安地块和松嫩地块之间洋盆的萎缩。  相似文献   

20.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号