首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
After more than 300 years of river management, scientific knowledge of European river systems has evolved with limited empirical knowledge of truly natural systems. In particular, little is known of the mechanisms supporting the evolution and maintenance of islands and secondary channels. The dynamic, gravel‐bed Fiume Tagliamento, Italy, provides an opportunity to acquire baseline data from a river where the level of direct engineering intervention along the main stem is remarkably small. Against a background of a strong alpine to mediterranean climatic and hydrological gradient, this paper explores relationships between topography, sediment and vegetation at eight sites along the active zone of the Tagliamento. A conceptual model of island development is proposed which integrates the interactions between large woody debris and vegetation, geomorphic features, sediment calibre and hydrological regime. Islands may develop on bare gravel sites or be dissected from the floodplain by channel avulsion. Depositional and erosional processes result in different island types and developmental stages. Differences in the apparent trajectories of island development are identified for each of the eight study sites along the river. The management implications of the model and associated observations of the role of riparian vegetation in island development are considered. In particular, the potential impacts of woody debris removal, riparian tree management, regulation of river flow and sediment regimes, and changes in riparian tree species' distribution are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying spatial and temporal dynamics of organic matter (OM) is critical both for understanding ecosystem functioning and for predicting impacts of landscape change. To determine the influence of different habitats and coarse particulate OM (CPOM) types upon floodplain OM dynamics, we quantified aerial input, lateral surface transfer, and surface storage of CPOM over an annual cycle on the near-natural floodplain of the River Tagliamento in NE-Italy. Using these data, we modelled floodplain leaf dynamics, taking account of the spatial distribution and hydrologic connectivity of habitats, and using leaf storage as a response variable. Mean aerial CPOM input to the floodplain was similar from riparian forest and islands, but surface transfer was greater from islands, supporting the suggestion that these habitats act as “islands of fertility” along braided rivers. Leaves were the lateral conveyor of energy to more open parts of the floodplain, whereas CPOM was mainly stored as small wood in vegetated islands and riparian forest. Simulating the loss of habitat diversity (islands, ponds) decreased leaf storage on the whole floodplain, on exposed gravel and in large wood accumulations. In contrast, damming (loss of islands, ponds and floods plus floodplain overgrowth) greatly increased storage on exposed gravel. A random shuffle of habitats led to a storage increase on exposed gravel, while that in large wood accumulations and ponds declined. These results disentangle some of the complexities of CPOM dynamics in floodplain ecosystems, illustrate the value of models in understanding ecosystem functioning at a landscape level, and directly inform river management practice.  相似文献   

4.
5.
6.
After more than 300 years of widespread and intensive river management, few examples of complex, unmanaged river systems remain within Europe. An exception is the Fiume Tagliamento, Italy, which retains a riparian woodland margin and unconfined river channel system throughout almost the entire 170 km length of its river corridor. A research programme is underway focusing on a range of related aspects of the hydrology, fluvial geomorphology and ecology of the Tagliamento. This paper contributes to that programme by focusing on large wood retention. The paper adopts a simple force:resistance approach at the scale of the entire river corridor in order to identify reaches of the river with a high wood retention potential. Information on the character of the river corridor is derived from 1:10 000 scale topographic maps. A range of indices measured at 330 transects across the river corridor supports a classification of the geomorphological style of the river which reflects the presence and abundance of properties previously identified in the literature as large wood retention sites. This classification provides a qualitative representation of the ‘resistance’ of the corridor to wood movement and thus its overall wood‐retention potential. The map‐derived indices are also used to extrapolate estimates of the ten year return period flood to each of the 330 transects so that the downstream pattern of unit stream power can be quantified as an index representing ‘force’ in the analysis. Although input of wood is an important factor in many river systems, it is assumed not to be a limiting factor along the Tagliamento, where riparian woodland is abundant. Field observations of large wood storage illustrate that wood retention at eight sites along the river reflects the presence and abundance of the features incorporated in the classification of geomorphological style, including the complexity of the channel network, the availability of exposed gravel areas, and the presence of islands. In general at the time of survey in August 1998, open gravel areas were estimated to store approximately 1 t ha−1 of wood in single‐thread reaches and 6 t ha−1 in multiple‐thread reaches. Established islands were estimated to store an average of 80 t ha−1 of wood. Nevertheless, there was considerable variability between sites, and pioneer islands, which are not represented on maps or readily identified from air photographs because of their small size, were estimated to store an order of magnitude more wood than established islands. Furthermore, the wood storage from this sample of eight sites did not reflect variability in estimated unit stream power. A series of areas for further research are identified, which can be explored using field data, and which will throw more light on the processes of wood retention in this extremely dynamic fluvial environment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Organic carbon (OC) in valley bottom downed wood and soil that cycles over short to moderate timescales (101 to 105 years) represents a large, dynamic, and poorly quantified pool of carbon whose distribution and residence time affects global climate. We sought to quantify this potentially important OC pool at the watershed scale to estimate its magnitude and age, as well as determine the controls on its variability within watersheds. To do this, we compared four disparate mountain river basins to show that mountain river valley bottoms store substantial estimated OC stocks in floodplain soil and downed wood (median OC of MgC/ha, n = 178). Although soil OC is generally young (exhibiting a median radiocarbon fraction modern value of , n = 121), geomorphic processes regulate soil burial and processes that limit microbial respiration, preserving aged OC in especially deep, unconfined, wet, and/or high-elevation floodplain soils. We statistically modeled OC stocks to show that valley bottom morphology and hydrology regulate variability in floodplain soil retention and resulting variability in OC stock and age in floodplain soil throughout river networks. Comparing the distribution of OC stocks between wood and soil, we find that where floodplain soils are present, their OC stocks are generally greater than OC stocks stored in wood. Our results suggest that although mountain rivers may accumulate large OC stocks relatively rapidly, those stocks are highly sensitive to alterations in soil and wood retention, implying that human alterations to either disturb or restore floodplain wood and soil storage may have substantial impacts on OC storage in river corridors. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long‐term (> 102 years) storage. Research in ecosystem processing emphasizes the importance of organic carbon (OC) in river systems, and estimates of OC fluxes in terrestrial freshwater systems indicate that a significant portion of terrestrial carbon is stored within river networks. Studies have examined soil OC on floodplains, but research that examines the potential mechanistic controls on OC storage in riparian ecosystems and floodplains is more limited. We emphasize three primary OC reservoirs within fluvial systems: (1) standing riparian biomass; (2) dead biomass as large wood (LW) in the stream and on the floodplain; (3) OC on and beneath the floodplain surface, including litter, humus, and soil organic carbon (SOC). This review focuses on studies that have framed research questions and results in the context of OC retention, accumulation and storage within the three primary pools along riparian ecosystems. In this paper, we (i) discuss the various reservoirs for OC storage in riparian ecosystems, (ii) discuss physical conditions that facilitate carbon retention and storage in riparian ecosystems, (iii) provide a synthesis of published OC storage in riparian ecosystems, (iv) present a conceptual model of the conditions that favor OC storage in riparian ecosystems, (v) briefly discuss human impacts on OC storage in riparian ecosystems, and (vi) highlight current knowledge gaps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre-Alps, two hydropower-regulated and one near-natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre-regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near-natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Rivers have been channelized, deepened and constrained by embankments for centuries to increase agricultural productivity and improve flood defences. This has decreased the hydrological connectivity between rivers and their floodplains. We quantified the hydrological regime of a wet grassland meadow prior to and after the removal of river embankments. River and groundwater chemistry were also monitored to examine hydrological controls on floodplain nutrient status. Prior to restoration, the highest river flows (~2 m3 s?1) were retained by the embankments. Under these flow conditions the usual hydraulic gradient from the floodplain to the river was reversed so that subsurface flows were directed towards the floodplain. Groundwater was depleted in dissolved oxygen (mean: 0.6 mg O2 L?1) and nitrate (mean: 0.5 mg NO3 ?-N L?1) relative to river water (mean: 10.8 mg O2 L?1 and 6.2 mg NO3 ?-N L?1, respectively). Removal of the embankments has reduced the channel capacity by an average of 60%. This has facilitated over-bank flow which is likely to favour conditions for improved flood storage and removal of river nutrients by floodplain sediments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Clilverd, H.M., Thompson, J.R., Heppell, C.M., Sayer, C.D., and Axmacher, J.C., 2013. River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrological Sciences Journal, 58 (3), 627–650.  相似文献   

14.
We analysed total bacterial number and mean volume of cells at three sites in each of ten floodplain lakes in the Middle Basin of the Biebrza River, North-Eastern Poland to test bacterioplankton communities change according to the distance to the river. The composition of the bacterial communities was determined by fluorescent in situ hybridization method. Total number of bacteria in the lakes ranged from 4.0 to 7.48 cells × 106 mL−1 with dominance by Actinobacteria, the contribution of which was positively correlated with water level. Old river channels (side-arms) featured Alpha- and Gammaproteobacteria. The community of Betaproteobacteria was limited by concentration of dissolved organic carbon. Archaea, in spite of a minor role (<3.65% of DAPI-4′,6-diamidino-2-phenylindole) in the communities, showed a positive relation to floodplain lake isolation. Multivariate analysis demonstrated that bacterioplankton in riverine lakes was similar to that in rivers, while lakes with limited water exchange showed a similarity to fertile lakes. Water level and nutrients were among the factors determining bacterial community structure.  相似文献   

15.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports on a first attempt of using the virtual velocity approach to assess sediment mobility and transport in two wide and complex gravel‐bed rivers of northern Italy. Displacement length and virtual velocity of spray‐painted tracers were measured in the field. Also, the thickness of the sediment active layer during floods was measured using scour chains and post‐flood morphological changes as documented by repeated survey of channel cross‐sections. The effects of eight and seven floods were studied on the Tagliamento and Brenta Rivers, where 259 and 277 spray‐painted areas were surveyed, respectively. In the Tagliamento River 36% of the spray‐painted areas experienced partial transport, whereas in the Brenta River this accounted for 20%. Whereas, full removal/gravel deposition was observed on 37% and 26% of these areas on the Tagliamento and Brenta Rivers, respectively. The mean displacement length of particles, the thickness of the active layer and the extent of partial transport are well correlated with the dimensionless shear stress. The virtual velocity approach allowed calculation of bed material transport over a wide range of flood magnitudes. Annual coarse sediment transport was calculated up to 150 for the Tagliamento, and 30 × 103  m3 yr?1 for the Brenta. The outcomes of this work highlight the relevance of partial transport condition, as it could represent more than 70% of the total bed material transported during low‐magnitude floods, and up to 40% for near‐bankfull events. Results confirm that bed material load tends to be overestimated by traditional formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi‐scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale‐related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud‐dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号