首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A survey within the French National Programme of Ecotoxicology was carried out in 2002, 2003 and 2004 to study the response of Nereis diversicolor populations (Polychaeta, Nereididae) to the impact of pollution in the Authie estuary (non-contaminated site) and in the Seine estuary (contaminated site). In the period studied, the density varied from 672 ind. m−2 to 3584 ind. m−2 in the Authie estuary and from 80 ind. m−2 to 920 ind. m−2 in the Seine estuary. Biomass varied from 3.94 g m−2 (dry weight) in February 2004 to 38.0 g m−2 in August 2003 in the Authie estuary and from 3.4 g m−2 in February 2002 to 0.6 g m−2 in February 2004 in the Seine estuary. Density and biomass of the populations of N. diversicolor were consistently lower in the Seine estuary than in the Authie estuary. Size frequency histograms permit the analysis of the cohorts as well as the elaboration of the growth curves. For the individuals from the Authie estuary, the relation between dry weight (DW) and length L3 (prostomium, peristomium and chaetiger 1) was DW = 4.2205 L32.9832. For those from the Seine estuary, the relation between dry weight and L3 was DW = 0.4697e1.7209L3. The individuals of N. diversicolor should belong to eight cohorts in Authie estuary (two cohorts each year) instead of six cohorts for those from the Seine estuary. These differences can be attributed to the effect of pollution on the population of N. diversicolor.  相似文献   

3.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

4.
Populations dominated by Cystoseira zosteroides, an endemic and threatened Mediterranean seaweed, colonize deep-water rocky habitats down to more than 50 m depth. Assemblages dominated by this species display high algal and invertebrate species richness. Algal biomass averages 1134 g dw m−2. Erect and turf algae account for only 25% of total algal dry weight, while encrusting corallines are responsible for the remaining 75%. Sponges, bryozoans and ascidians constitute the dominant sessile macrofauna. Cystoseira zosteroides is the dominant erect algae, with a mean biomass of 60.6 g dw m−2, and densities ranging from 4 to 7 plants m−2. The alien turf alga Womersleyella setacea has a biomass of 104.2 g dw m−2 and covers most of the understory substrate. The size-frequency distribution of C. zosteroides populations shows differences over time. Mean annual growth of the main axis is around 0.5 cm and mean annual mortality rate is lower than 2%. Recruitment was almost nil during the studied period of time (10 years). Processes structuring these deep-water Cystoseira stands must be driven by episodic disturbances, after-disturbance recruitment pulses, and long periods of steady growth that last at least 10 years. However, it is also possible that recruitment is irreversibly inhibited by the alien alga W. setacea in which case these old-growth stands are faced with extinction. The highly diversified assemblages and the low growth and low mortality rates of C. zosteroides indicate high vulnerability to natural and anthropogenic disturbances, and call for effective measures to ensure their conservation.  相似文献   

5.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

6.
In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH4 regeneration. NH4 and NO3 uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO3 (vNO3) was 0.0026 h−1 (range 0.0013-0.0065 h−1) and for NH4 (vNH4) was 0.0097 h−1 (0.0014-0.0376 h−1). vNH4 was related positively with NH4 availability, which ranged from 0.1 to 1.5 mmol m−3 within the upper mixed layer. Ambient NH4 concentrations and vNH4 were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from ∼1 g krill fresh mass m−2 in the northwest to >4 kg krill wet mass m−2 in the northeast. In contrast to the variability found with NH4 concentrations and uptake rates, vNO3 was more uniform across the sampling sites. Under these conditions, increasing NH4 concentration appeared to represent an additional N resource. However, high vNH4 tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m−3. These patterns suggest a coupling between phytoplankton biomass, vNH4 and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH4 excretion supported enhanced uptake rates by the remaining, ungrazed cells.  相似文献   

7.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

8.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

9.
Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment–water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m−2 day−1) and open mudflats (1.2 kg m−2 day−1), but were enhancing sediment removal in the saltmarsh edge (between 10 and 500 g m−2 day−1 in summer). The implication is that biologically mediated sedimentological changes could be different among microhabitats, potentially leading to contrasting geomorphologic effects within a particular ecosystem.  相似文献   

10.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

11.
The larvae of two carangid fishes, silver trevally (Pseudocaranx dentex) and yellowtail scad (Trachurus novaezelandiae), were compared among coastal water masses and the East Australian Current (EAC). Samples followed a north to south gradient including a southern region of upwelling, generated as the EAC separated from the coast. Mean larval carangid densities were greater in the mixed layer (10-30 m) than the surface, but there was no difference between inshore and offshore stations or along latitudinal gradients. Overall, P. dentex recent larval growth over two days pre-capture was faster than T. novaezelandiae, and faster at inshore, coastal stations than in the EAC. Integrated larval growth rate (mm d−1) was usually faster at inshore stations for both species. T. novaezelandiae were enriched in both nitrogen (??15N) and carbon (??13C) stable isotopes relative to P. dentex. Larvae of both species captured within the upwelling region were enriched in ??15N and depleted in ??13C relative to other sites. Recent larval growth had a significant positive relationship with fluorescence (as a proxy of chlorophyll a biomass), and integrated larval growth rate had a significant positive relationship with fluorescence and larval isotope (??15N) composition. Recent and integrated growth of larval T. novaezelandiae and P. dentex was enhanced by EAC separation and upwelling, and also in coastal water; stimulated by food availability, and potentially through exploitation of a different trophic niche.  相似文献   

12.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   

13.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   

14.
Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l−1 of chrysene equivalents) and high (23 ± 5 μg l−1 of chrysene equivalents l−1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24–72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.  相似文献   

15.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

16.
Recurrent coastal upwelling is recognized as one of the main factors promoting the exceptionally high productivity of the Humboldt Current System. Herein, we study time series data of gross primary production (2003-2006) and its fluctuation in relation to seasonal changes in the light and nutrient field of the Concepción upwelling ecosystem. Concurrent measurements of gross primary production, community respiration, bacterial secondary production, and sedimentation rates allowed a characterization of the main carbon fluxes and pathways in the study area. The integrated values of gross primary production were higher during the upwelling period (>1 g C m−2 d−1; October-April; that is, early spring to early austral fall). Seasonal changes in the system were also reflected in community respiration, organic matter sedimentation, and bacterial production rates, which varied along with the gross primary production. The significant correlation between gross primary production and community respiration (Spearman, r = 0.7; p < 0.05; n = 18) reflected an important degree of coupling between organic matter formation and its usage by the microplanktonic community during periods when gross primary production/community respiration were highly similar. Higher gross primary production values (>6 g C m−2 d−1) were consistently associated with maximum biomass levels of Skeletonema costatum and Thalassiosira subtilis. We observed a positive correlation between gross primary production and the sedimentation of intact diatom cells (Spearman, r = 0.5, p < 0.05, n = 17). Our data suggest that, in the Concepción upwelling ecosystem, bacteria utilize an important fraction of the gross primary production. If our interpretations are correct, they leave unanswered the question of how the system supports the extremely high fish biomass levels, therein pointing out the system’s limited capacity to buffer the evasion of CO2 following upwelling.  相似文献   

17.
A year-round survey of the tropical shallow-water mysid Mesopodopsis orientalis (Tattersall, 1908) (Crustacea, Mysidacea) was conducted in the Merbok mangrove estuary, northwestern Peninsular Malaysia. The mysid formed dense aggregations at the river's edge close to the mangrove forest during the daytime, but very few were captured elsewhere in the estuary system. The sampled population was found in a wide range of salinities from 16 to 32, demonstrating broad euryhalinity, and the number of the catch at the littoral zone ranged from 11.8 to 2273 ind m−2. The overall annual mean was 709.2 ind m−2. Females predominated over males in the entire population, and brooding females were present at every monthly sample, indicating that reproduction is continuous year round. The clutch size positively correlated with female body length. The diameter of eggs (Stage I embryos) was unaffected by the seasonality and independent of the maternal size within an observed size range. The life history pattern of the estuarine population of M. orientalis showed close similarity to that of the coastal counterpart. However, the former was found to produce fewer but larger eggs, and the specimens in this population were larger than those in the coastal population at the embryo, juvenile, and adult stages. This evidence indicates that the life history features of the estuarine population would differ to some degree from those of the coastal counterpart.  相似文献   

18.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   

19.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

20.
Large Zostera marina meadows (covering 13.6 km2) existed in the Nakdong River estuary on the south coast of Korea until the mid-1980s, but these Z. marina beds nearly disappeared due to reclamation of adjacent mud flats for the construction of a port and industrial complex during the late 1980s. Partial recovery of Z. marina meadows occurred recently, and Z. marina coverage of about 0.3 km2 was observed in this estuary. In this study, shoot morphology, density, biomass, productivity, and tissue nutrient content were measured to evaluate the current status of the Z. marina meadows by comparing these data to those for persistent seagrass meadows in similar geographical areas. Additionally, we examined the ecological roles of Z. marina in this estuary after recovery from the large-scale disturbance. Shoot density (151 shoots m−2) and total biomass (141 g DW m−2) in the estuary were similar to those reported from other Z. marina meadows in Korea. Annual leaf production (1726 g DW m−2 y−1) was higher than generally observed for Z. marina in other geographical areas. These results imply that the existing Z. marina meadows in this estuary have adjusted to local environmental conditions that changed after large-scale reclamation. Estimated annual whole plant carbon (C) and nitrogen (N) incorporations based on shoot production and tissue C and N content were 810.0 g C m−2 y−1 and 59.7 g N m−2 y−1, respectively. These values were equivalent to 2.4 × 105 kg C y−1 and 1.8 × 104 kg N y−1 for all Z. marina beds in the Nakdong River estuary. This high C and N incorporation into Z. marina tissues suggests that existing Z. marina meadows play important roles in C and N cycles in this estuary. Although the currently existing Z. marina beds in this estuary are persisting and play an important ecological role, anthropogenic factors that cause seagrass declines still affect the estuary. Thus, effective management and monitoring of Z. marina beds and environmental factors are critical to protecting and conserving this invaluable component of the Nakdong River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号