首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   

2.
In situ benthic flux measurements, pore water nutrient profiles, water column nutrient distributions, sediment grain size distributions and side-scan sonar observations suggest that advective transport of pore waters may be a major input pathway of nutrients into the Satilla River Estuary (coastal Georgia, USA). In situ benthic chamber incubations demonstrate the occurrence of highly variable, but occasionally very large sea floor fluxes of silicate, phosphate, and ammonium. Locally occurring benthic microbial mineralization of organic matter, as estimated by S35-sulphate reduction rate measurements, is insufficient to support these large fluxes. We hypothesize that the observed interlayering of permeable, sandy sediments with fine-grained, organic-rich sediments in the estuary provides conduits for advective transport of pore water constituents out of the sediments. Because permeable layers may extend significant distances beneath the salt marsh, the large fluxes observed may be supported by remineralization occurring over large areas adjacent to the estuary. Advective transport may be induced by pressure gradients generated by a variety of processes, including landward recharge by meteoric or rain waters if sand layers extend far enough into the maritime coastal lands. Alternatively, tidal variations across the salt marsh sediment surface may hydraulically pump water through the sediment system. Because these fluxes appear to be concentrated into small layers, this source may be a significant input of nutrients to the estuary even if permeable, sandy layers comprise a very small proportion of the seabed.  相似文献   

3.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

4.
We describe the quantitative and compositional (phytopigment, protein, carbohydrate and lipid) patterns of sedimentary organic matter along bathymetric gradients in seven submarine canyons and adjacent open slopes located at four European regions: one along the NE Atlantic and three along the Mediterranean continental margins. The investigated areas are distributed along a putative longitudinal gradient of decreasing primary production from the Portuguese (northeastern Atlantic Ocean), to the Catalan (western Mediterranean Sea), Southern Adriatic (central Mediterranean Sea) and Southern Cretan (eastern Mediterranean Sea) margins. Sediment concentrations of organic matter differed significantly between the Portuguese margin and the Mediterranean regions and also from one study area to the other within the Mediterranean Sea. Differences in quantity and composition of sediment organic matter between canyons and open slopes were limited and significant only in the eutrophic Portuguese margin, where the differences were as large as those observed between regions (i.e. at the mesoscale). These results suggest that the overall trophic status of deep margin sediments is controlled mostly by the primary productivity of the overlying waters rather than by the local topography. Moreover, we also report that the quantity and nutritional quality of sediment organic matter in canyons and adjacent open slopes do not show any consistent depth-related pattern. Only the Nazaré and Cascais canyons in the Portuguese margin, at depths deeper than 500 m, displayed a significant accumulation of labile organic matter. The results of our study underline the need of further investigations of deep margins through sampling strategies accounting for adequate temporal and spatial scales of variability.  相似文献   

5.
本研究旨在揭示九龙江口潮滩有机质含量及其来源的时空分异规律,寻找有效识别潮滩沉积环境的有机碳指标,以便更好地将有机碳应用于河口沉积微相识别和古环境研究。在九龙江口潮滩不同地貌单元,于夏季和冬季采集41个表层沉积物,进行粒度、总有机碳(TOC)、总氮(TN)和稳定碳同位素(δ13C)测试。结果显示:从高潮滩至低潮滩,沉积物粒度逐渐变粗,TOC、TN和C/N变小,δ13C值偏正。高潮滩有机质来源以陆源和红树林贡献为主,中潮滩以海源和互花米草贡献为主,低潮滩以海源贡献为主。九龙江口潮滩有机质的分布和来源受控于河口陆海相互作用的季节变化、潮滩沉积动力分异和潮滩植被分布。高潮滩与中–低潮滩之间,TOC存在显著性差异,TN、δ13C存在极显著性差异,因此参数组合TOC、TN和δ13C可作为高潮滩与中–低潮滩的有效判别指标。  相似文献   

6.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   

7.
Sandy sediments of continental shelves and most beaches are often thought of as geochemical deserts because they are usually poor in organic matter and other reactive substances. The present study focuses on analyses of dissolved biogenic compounds of surface seawater and pore waters of Aquitanian coastal beach sediments. To quantitatively assess the biogeochemical reactions, we collected pore waters at low tide on tidal cross-shore transects unaffected by freshwater inputs. We recorded temperature, salinity, oxygen saturation state, and nutrient concentrations. These parameters were compared to the values recorded in the seawater entering the interstitial environment during floods. Cross-shore topography and position of piezometric level at low tide were obtained from kinematics GPS records. Residence time of pore waters was estimated by a tracer approach, using dissolved silica concentration and kinetics estimate of quartz dissolution with seawater. Kinetics parameters were based on dissolved silica concentration monitoring during 20-day incubations of sediment with seawater. We found that seawater that entered the sediment during flood tides remained up to seven tidal cycles within the interstitial environment. Oxygen saturation of seawater was close to 100%, whereas it was as low as 80% in pore waters. Concentrations of dissolved nutrients were higher in pore waters than in seawater. These results suggest that aerobic respiration occurred in the sands. We propose that mineralised organic matter originated from planktonic material that infiltrated the sediment with water during flood tides. Therefore, the sandy tidal sediment of the Aquitanian coast is a biogeochemical reactor that promotes or accelerates remineralisation of coastal pelagic primary production. Mass balance calculations suggest that this single process supplies about 37 kmol of nitrate and 1.9 kmol of dissolved inorganic phosphorus (DIP) to the 250-km long Aquitanian coast during each semi-diurnal tidal cycle. It represents about 1.5% of nitrate and 5% of DIP supplied by the nearest estuary.  相似文献   

8.
The influence of bioturbation on certain aspects of the biogeochemistry of sulfur and iron was examined in shallow-water sediments of Great Bay Estuary, New Hampshire. A bioturbated (JEL) and non-bioturbated (SQUAM) site were compared. Annual sulfate reduction measured with 35S, was 4·5 times more rapid at JEL. A significant portion of this difference was attributed to rapid rates which occurred throughout the upper 12 cm of sediment at JEL due to infaunal reworking activities. Sulfate reduction decreased rapidly with depth at SQUAM. FeS in the upper 2 cm at JEL increased in concentration from 3 to 45 μmol ml−1 from early May to late July while only increasing from 3 to 8 μmol ml−1 at SQUAM. Infaunal irrigation and reworking activities caused rapid and continous subsurface cycling of iron and sulfur at JEL. This maintained dissolved iron concentrations at 160–170 μM throughout the summer despite rapid sulfide production. Therefore, dissolved sulfide never accumulated in JEL pore waters. Although dissolved organic carbon (DOC) was generated during sulfate reduction, bioturbation during summer caused a net removal of DOC from JEL pore waters. Sulfate reduction rates, decomposition stoichiometry and nutrient concentrations were used to calculate turnover times of nutrients in pore waters. Nutrient turnover varied temporally and increased three-to five-fold during bioturbation. A secondary maximum in the abundance of recoverable sulfate-reducing bacteria occurred at 10 cm in JEL sediments only during periods of active bioturbation, demonstrating the influence of macrofaunal activities on bacterial distributions.  相似文献   

9.
The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.  相似文献   

10.
Chemical concentration gradients in the interstitial waters of shallow (0–10 cm), reducing sediments are reported for four stations in the Tamar Estuary over a two-year period. The products of organic matter breakdown, sedimentary redox changes and diagenetic reactions have been determined and a multicomponent analytical approach has enabled the interactions of complementary processes to be examined. While many components show spatial and seasonal patterns related to the supply of organic matter and salinity associated sulphate distribution, the effects of temperature, sediment disturbance and river flow are also apparent.Sediment stored prior to the separation of interstitial water showed significant changes in chemical composition compared to samples processed within 24 h of collection.  相似文献   

11.
The objectives of this study were to investigate the seasonality, abundance, sources and bioreactivity of organic matter in the water column of the western Arctic Ocean. The concentrations of particulate and dissolved amino acids and amino sugars, as well as bulk properties of particulate and dissolved organic matter (DOM), were measured in shelf, slope and basin waters collected during the spring and summer of 2002. Particulate organic matter concentrations in shelf waters increased by a factor of 10 between spring and summer. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations exhibited only minor seasonal variations, whereas dissolved amino acid concentrations doubled between spring and summer, and dissolved amino sugars increased by 31% in shelf waters of the Chukchi and Beaufort Seas. Concentrations of DOC did not exhibit a significant seasonal change in surface waters of the Canada Basin, but dissolved amino acid concentrations increased by 45% between spring and summer. No significant seasonal differences were detected in the concentration or composition of DOM in waters below 100 m in depth. Concentrations of particulate and dissolved amino acids and amino sugars were strongly correlated with chlorophyll-a, indicating a plankton source of freshly produced organic matter. The amino acid and amino sugar compositions of freshly produced DOM indicated that a large portion of this material is bioavailable. While freshly produced DOM was found to be relatively bioreactive, preformed DOM in the Arctic appears to be less bioreactive but similar in degradation state to average DOM in the Atlantic and Pacific. These data demonstrate substantial summer production of POM and DOM on the Chukchi and Beaufort shelves that is available for utilization in shelf waters and export to the Canada Basin.  相似文献   

12.
The Arcachon lagoon is a 156 km2 temperate mesotidal lagoon dominated by tidal flats (66% of the surface area). The methane (CH4) sources, sinks and fluxes were estimated from water and pore water concentrations, from chamber flux measurements at the sediment–air (low tide), sediment–water and water–air (high tide) interfaces, and from potential oxidation and production rate measurements in sediments. CH4 concentrations in waters were maximal (500–1000 nmol l−1) in river waters and in tidal creeks at low tide, and minimal in the lagoon at high tide (<50 nmol l−1). The major CH4 sources are continental waters and the tidal pumping of sediment pore waters at low tide. Methanogenesis occurred in the tidal flat sediments, in which pore water concentrations were relatively high (2.5–8.0 μmol l−1). Nevertheless, the sediment was a minor CH4 source for the water column and the atmosphere because of a high degree of anaerobic and aerobic CH4 oxidation in sediments. Atmospheric CH4 fluxes at high and low tide were low compared to freshwater wetlands. Temperate tidal lagoons appear to be very minor contributor of CH4 to global atmosphere and to open ocean.  相似文献   

13.
Sediment and water column data from four sites in North, Central and South San Francisco Bays were collected monthly from November 1999 through November 2001 to investigate the seasonal variation of benthic organic matter and chlorophyll in channel sediments, the composition and quality of sediment organic matter (SOM), and the relationship between seasonal patterns in benthic organic matter and patterns in water column chlorophyll. Water column chlorophyll peaked in the spring of 2000 and 2001, characteristic of other studies of San Francisco Bay phytoplankton dynamics, however an unusual chlorophyll peak occurred in fall 2000. Cross-correlation analysis revealed that water column chlorophyll at these four channel sites lead sediment parameters by an average of 2 to 3 months. Sediment organic matter levels in the San Francisco Bay channel showed seasonal cycles that followed patterns of water column production: peaks in water column chlorophyll were followed by later peaks in sediment chlorophyll and organic matter. Cyclical, seasonal variations also occurred in sediment organic matter parameters with sediment total organic carbon (TOC) and total nitrogen (TN) being highest in spring and lowest in winter, and sediment amino acids being highest in spring and summer and lowest in winter. Sediment chlorophyll, total organic carbon, and nitrogen were generally positively correlated with each other. Sediment organic matter levels were lowest in North Bay, intermediate in Central Bay, and highest in South Bay. C:N ratio and the ratio of enzyme hydrolyzable amino acids to TOC (EHAA:TOC) data suggest that SOM quality is more labile in Central and northern South Bay, and more refractory in North Bay and southern South Bay.  相似文献   

14.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

15.
基于2016年春、秋两个季节的现场实验数据, 研究光裸方格星虫(Sipunculus nudus Linnaeus)滩涂增养殖对滩涂底质的影响。实验对方格星虫单养区(S组)、方格星虫-贝类混养区(P组)和无星虫对照区(C组)进行了有机质、粒径组成、氧化还原电位(ORP)等指标测定, 结果表明: 1) 秋季S组20~30cm层次有机质含量和细沙比例均显著高于春季, 而C组仅表层物质有所增加, 表明方格星虫具有较强的表层物质迁移能力, 且其迁移深度为20~30cm。2) 秋季C组各层氧化还原电位值(ORP)均无明显降低趋势, 而S组仅10~20cm层次有一定程度降低, 表明方格星虫增养殖并不会明显降低滩涂底质状况。3) P组各层有机质以及细沙含量增加, 表明皱肋文蛤的过滤沉积作用可以提高滩涂颗粒物质的积累, 且方格星虫混养会加速颗粒物质的向下迁移; P组皱肋文蛤的栖息层次(0~3cm、3~10cm) ORP明显低于S组(p<0.05), 表明高密度的皱肋文蛤代谢活动会加剧0~10cm的底质恶化。4) 方格星虫与皱肋文蛤具有生态互补作用, 在同一区域进行增养殖可以提高滩涂物质利用率及碳汇功能; 方格星虫扰动引入富氧水可以缓解皱肋文蛤栖息层次的底质。  相似文献   

16.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   

17.
在南极普里兹湾外开阔海域布放时间系列沉积物捕获器,研究沉降颗粒物中生源组分(生物硅、有机质、碳酸钙)通量、组成、来源及元素的摩尔比值的生物地球化学意义,结果表明Ⅲ-1+站在1000m处颗粒物总通量的变化为13.00~334.59mg/(d·m2),颗粒物中以生物硅为主,占总通量的80%以上;各组分通量呈现明显的季节性变化.结合罗斯海沉降颗粒物通量和元素的摩尔比值的对比研究表明,研究海域1000m深的沉降颗粒物中生物硅与有机碳元素摩尔比值、无机碳与有机碳的元素摩尔比值较高,表明研究海域生物硅与有机碳生物地球化学循环过程是非耦合的,生物活动有效地将CO2由表层水中移出.  相似文献   

18.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

19.
Fluxes of amino acids and hexosamines to the deep South China Sea   总被引:2,自引:0,他引:2  
Settling particles collected by sediment traps deployed between 1987 and 1999 in the northern, central and southwestern South China Sea (SCS) were analysed to study seasonal, interannual and spatial variations in the composition and flux of labile particulate matter. Results were combined with remote-sensing and surface-sediment data in order to describe the factors controlling the preservation of organic matter en route from the upper ocean to the seafloor. Organic carbon, amino acid and hexosamine fluxes generally follow the fluxes of total particulate matter, with maxima during the SW and NE monsoon periods. During non-El Niño conditions spectral amino acid distributions show that degradation of organic matter in the water column decreases as the flux rates increase. This is suggested to be the combined result of enhanced primary productivity, greater input of lithogenics serving as ballast to increase settling rates, and sorption of labile components to clay minerals. During El Niño conditions, in contrast, the degree of organic matter degradation is at very high and comparable levels at all trap sites. Flux component seasonality is strongly reduced except for the coastal upwelling areas, particularly off central Vietnam, which show significantly higher fluxes of organic carbon and lithogenic matter as compared to the open SCS. This suggests that the fluxes are affected by lateral advection of reworked organic matter from riverine sources or resuspended sediments from the nearby shelf/slope. Comparison of the measured organic carbon fluxes in 1200 m depth with those accumulating in surface sediments results in a more than 80% loss of organic matter before final burial in the sediments. The degree of organic matter preservation in the surface sediments of the deep SCS is distinctly lower than in other monsoonal oceans. This may be due to varying lithogenic input and almost complete dissolution of protective biogenic mineral matrices at greater water depth.  相似文献   

20.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号