首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper reports the discovery of a visible, tephra horizon of Late‐glacial age from the site of Loch Ashik in the Isle of Skye, the Inner Hebrides, Scotland. Although the tephra shards have a bimodal geochemical composition identical to that of the Vedde Ash (a well known marker horizon within Late‐glacial sequences. The horizon at Ashik is dominated by basaltic shards and devitrified tephra shards, giving the layer its characteristic black colour. Only rhyolitic shards have previously been reported from Vedde Ash horizons in the British Isles. This new evidence raises some important questions about the factors that govern the distribution and accumulation of basaltic tephra, and about the methods used to detect ash shards in basins distal to centres of volcanic activity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

3.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The Vedde Ash (c. 10 300 14 C BP) provides a key time-parallel marker horizon within the Younger Dryas chronozone or GS-1 event of the GRIP stratigraphy. Until recently, the known distribution of wind-blown Vedde Ash outside Iceland was restricted to the west coast of Norway, off-shore sequences close to the Outer Hebrides and the Greenland summit GRIP ice core. The first discoveries of the Vedde Ash in Scotland were reported in 1997, following the development of a new technique for extracting rhyolitic micro-tephra particles from minerogenic deposits. Here we report on the discovery of the Vedde Ash at additional sites in Scotland and at sites in southern Sweden. The concentration of tephra particles in sediments is highest in sites in western Norway, but is also relatively high in sites in southwestern Sweden, suggesting that the main ash cloud travelled eastwards from its volcanic source of Katla, in southern Iceland. Electron microprobe analyses do not indicate any clear geochemical evolution within the samples reported here.  相似文献   

5.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Evidence is presented to show that two measurable concentrations of microtephra particles can be detected in deposits of Late Devensian Late-glacial age in three sites in Scotland. One layer is attributed to the Vedde Ash, a marker horizon within the Younger Dryas chronozone. The second is a new tephra reported for the first time, which we name the Borrobol Tephra. This occurs consistently near the base of the Late-glacial Interstadial organic sediments at each site, and is thought to date to around 12.5 14C ka BP. Geochemical determinations using an electron microprobe confirm the identification of the Vedde Ash, suggest the Borrobol Tephra to have an Icelandic origin, and demonstrate the consistency of the geochemical signals at all three sites. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years.  相似文献   

8.
Three distal tephra layers or cryptotephras have been detected within a sedimentary sequence from the Netherlands that spans the last glacial-interglacial transition. Geochemical analyses identify one as the Vedde Ash, which represents the southernmost discovery of this mid-Younger Dryas tephra so far. This tephra was found as a distinct horizon in three different cores sampled within the basin. The remaining two tephras have not been geochemically 'fingerprinted', partly due to low concentrations and uneven distributions of shards within the sequences sampled. Nevertheless, there is the potential for tracing these tephra layers throughout the Netherlands and into other parts of continental Europe. Accordingly, the possibilities for precise correlation of Dutch palaeoenvironmental records with other continental, marine and ice-core records from the North Atlantic region are highlighted.  相似文献   

9.
As part of ongoing research to find distal tephra, two lacustrine cores were analysed for the presence of volcanic ash layers, not visible to the naked eye: Soppensee, in Switzerland, and Rotmeer, in Southern Germany. The Laacher See Tephra (12,900 ka BP) is present as a visible layer in both sites. In both cores we found a discrete tephra horizon, with similar morphologies, in the middle of the biostratigraphic units equivalent to the Younger Dryas stadial. The vitreous components of these two tephra layers are geochemically identical. Comparison of the geochemical, stratigraphical, and chronological data from both sites, strongly suggest that the tephra can be attributed to the Icelandic Vedde Ash, a widely distributed horizon found throughout the North Atlantic and Northern Europe. Our results indicate that a precise and direct correlation between the Greenland ice cores and Central European sequences is now possible, based on a co-located tephra layer. This means that there is now the potential, to independently test climate synchronicity between Greenland and Europe, as far south as the Alps.  相似文献   

10.
The known distribution of wind‐blown Vedde Ash (ca. 10.3 ka BP) has been extended to the Karelian Isthmus in northwestern Russia. This has been possible as the result of a density separation technique that separates the rhyolitic Vedde Ash shards from the minerogenic host sediment. The Vedde Ash occurs in the middle of a pollen zone with high percentages of, for example, Artemisia and Chenopodiaceae, suggesting that the Younger Dryas (or GS‐I in the GRIP ice‐core event stratigraphy) was cold and dry throughout its duration. This is in agreement with sites in south Sweden where the Vedde Ash also occurs in the middle of a pollen zone dominated by Artemisia, Chenopodiaceae and Cyperaceae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Articulated molluscs, sea urchins and barnacle fragments close to the Vedde Ash Bed in a shallow marine deposit on the west coast of Norway have been 14C dated. The weighted mean of four dates from a sediment slice 8 cm thick centred on the Vedde Ash Bed is 10920 ± 24 14C yr BP. The most accurate 14C age of the Vedde Ash from terrestrial plant macrofossils is 10310 ± 50 yr BP. The difference is the 14C reservoir age for coastal water at the west coast of Norway during the mid‐Younger Dryas and equals 610 ± 55 yr. This is 230 yr older than the reservoir age for the Bølling/Allerød and for the present day in this area. The result supports earlier conclusions of a higher reservoir age for the Younger Dryas in the North Atlantic and Nordic Seas, although our reservoir age of 610 ± 55 yr is a few hundred years younger. This suggests that the 14C reservoir age at Vedde Ash time may increase from coastal water towards the open North Atlantic and Nordic Seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Studies of Late Quaternary sediments in south and central Sweden have yielded a detailed tephrochronology for the Last Glacial–Interglacial transition (LGIT; ca. 15,000–10,000 cal. yr BP) and the Holocene. More than ten tephra layers have been detected and geochemically characterised. The most widespread tephra from the LGIT is the rhyolitic phase of the Vedde Ash (ca. 12,000 cal. yr BP) which has been found in lacustrine sediments and marine clays south of the Younger Dryas moraines in south Sweden. Other horizons from the LGIT identified to date include the Borrobol tephra (ca. 14,400 cal. yr BP), the Hässeldalen tephra (ca. 11,500 cal. yr BP), the 10-ka Askja tephra (ca. 11,300 cal. yr BP) and the Högstorpsmossen tephra (ca. 10,200 cal. yr BP). The most significant Holocene isochrones are Hekla-4 (ca. 4260 cal. yr BP), Hekla-Selsund/Kebister (ca. 3750 cal. yr BP), Hekla-3 (ca. 3000 cal. yr BP) and Askja-1875. Two new Late Holocene tephra horizons (the Stömyren tephra, ca. 2100 cal. yr BP and the Gullbergby tephra; ca. 2700 cal. yr BP) were identified in single sites and are so far less valuable as marker horizons, but are potentially important for the future.  相似文献   

13.
A Holocene tephra record from the Lofoten Islands, Arctic Norway   总被引:2,自引:0,他引:2  
Pilcher, J., Bradley, R. S., Francus, P. & Anderson, L. 2005 (May): A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas , Vol. 34, pp. 136–156. Oslo. ISSN 0300–9483.
A tephrochronology has been established for a peat bog in the Lofoten Islands that provides a dating framework for future lake and bog studies of climate variation in this climatically sensitive area. Twenty-three tephra layers were identified, all apparently of Icelandic origin. These included the historically dated tephras of AD 1875 (Askja), AD 1362 (Öraefajökull), AD 1158 (Hekla), AD 1104 (Hekla) and the Landnam tephra identified at AD 875 in the GRIP ice core. Other layers, previously radiocarbon dated in Ireland and elsewhere, include the Hekla eruptions of c. 2310 BC and c. 5990 BC. The basal clays below the peat contain tephra of both the Askja eruption of c. 9500 BC (10 000 radiocarbon years BP) and the well-known Vedde Ash of c. 12 000 BP (10 030 80 BC in GRIP ice core).  相似文献   

14.
The Eyjafjöll AD 2010 eruption is an extraordinary event in that it led to widespread and unprecedented disruption to air travel over Europe – a region generally considered to be free from the hazards associated with volcanic eruptions. Following the onset of the eruption, satellite imagery demonstrated the rapid transportation of ash by westerly winds over mainland Europe, eventually expanding to large swathes of the North Atlantic Ocean and the eastern seaboard of Canada. This small‐to‐intermediate size eruption and the dispersal pattern observed are not particularly unusual for Icelandic eruptions within a longer‐term perspective. Indeed, the Eyjafjöll eruption is a relatively modest eruption in comparison to some of the 20 most voluminous eruptions that have deposited cryptotephra in sedimentary archives in mainland Europe, such as the mid Younger Dryas Vedde Ash and the mid Holocene Hekla 4 tephra. The 2010 eruption, however, highlights the critical role that weather patterns play in the distribution of a relatively small amount of ash and also highlights the spatially complex dispersal trajectories of tephra in the atmosphere. Whether or not the preservation of the Eyjafjöll 2010 tephra in European proxy archives will correspond to the extensive distributions mapped in the atmosphere remains to be seen. The Eyjafjöll 2010 event highlights our increased vulnerability to natural hazards rather than the unparalleled explosivity of the event. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   

16.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Several reworked tephra layers in gravity-flow deposits are present in lacustrine core sediments collected from Hotel and Rudy Lakes on King George Island, South Shetland Islands, maritime sub-Antarctica. This study tests the values of tephra for establishing regional tephrochronologies for lakes in ice-covered landscapes in the vicinity of volcanoes. The tephra record is more abundant in a long Hotel Lake core (515 cm long). This study uses volcanic glass samples from five tephra layers of Hotel Lake and from one tephra layer of Rudy Lake. Morphologically, tephras are mixtures of basaltic and pumice shards, both having various degrees of vesicularity. Major element analyses of glass shards reveal that the majority of the glass fragments belong to basic glass (<60 wt% SiO2), compositionally ranging from basalt to low-silica andesite and subalkaline series medium-K tholeiites, probably sourced from Deception Island located 130 km southwest of King George Island. Less than 20% of tephra belongs to silicic glass and occurs in three tephra horizons E of Hotel Lake. However, source volcano(es) for about 10% of basic tephra and silicic tephra are not readily identified from nearby volcanic centers. Except for the studied tephra in Rudy Lake, all tephra samples in Hotel Lake are not ashfall deposits but reworked and redeposited pyroclasts derived from retreating ice sheet, resulting in the occurrence of geochemically equivalent tephra samples in different tephra horizons. The dating of the studied tephra horizons represents the timing of deglaciation rather than that of volcanic eruptions. The result of this study implies that combined with sedimentological information more chemical criterion is necessary to study tephrochronology and regional correlation and to understand paleoenvironmental changes using tephra.  相似文献   

18.
Nine tephra layers in marine sediment cores (MD99‐2271 and MD99‐2275) from the North Icelandic shelf, spanning the Late Glacial and the Holocene, have been investigated to evaluate the effectiveness of methods to detect tephra layers in marine environments, to pinpoint the stratigraphic level of the time signal the tephra layers provide, and to discriminate between primary and reworked tephra layers in a marine environment. These nine tephra layers are the Borrobol‐like tephra, Vedde Ash, Askja S tephra, Saksunarvatn ash, and Hekla 5, Hekla 4, Hekla 3, Hekla 1104 and V1477 tephras. The methods used were visual inspection, magnetic susceptibility, X‐ray photography, mineralogical counts, grain size and morphological measurements, and microprobe analysis. The results demonstrate that grain size measurements and mineralogical counts are the most effective methods to detect tephra layers in this environment, revealing all nine tephra layers in question. Definition of the tephra layers revealed a 2–3 cm diffuse upper boundary in eight of the nine tephra layers and 2–3 cm diffuse lower boundary in two tephra layers. Using a multi‐parameter approach the stratigraphic position of a tephra layer was determined where the rate of change of the parameters tested was the greatest compared with background values below the tephra. The first attempt to use grain morphology to distinguish between primary and reworked tephra in a marine environment suggests that this method can be effective in verifying whether a tephra layer is primary or reworked. Morphological measurements and microprobe analyses in combination with other methods can be used to identify primary tephra layers securely. The study shows that there is a need to apply a combination of methods to detect, define (the time signal) and discriminate between primary and reworked tephra in marine environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The tephrochronological record of the 1400–1640 m depth (~10 000–16 000 calendar ice core years before present) of the NGRIP ice core has been established by particle screening of selected samples. Ash was identified in 20 samples. Correlation with ice, marine and terrestrial records from volcanic source regions in the northern hemisphere positively identifies the Saksunarvatn Ash and the Vedde Ash (Ash Zone 1). Major element chemistry of the remaining identified ash layers mainly points towards an Icelandic origin. This tephrochronological record provides new important marker horizons for correlating the timing of the climatic changes associated with the Last Glacial Termination within the North Atlantic region, as well as outlining more details concerning the frequency and composition of volcanic eruptions occurring at this deglaciation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The Tiscapa maar in the center of Managua city formed by a phreatomagmatic eruption <3 ka ago. The eruption excavated a crater deep into the basement exposing a coherent Pleistocene to Holocene volcaniclastic succession that we have divided into four formations. The lowermost, >60 ka old basaltic–andesitic formation F1 comprises mafic ignimbrites and phreatomagmatic tephras derived from the Las Sierras volcanic complex south of Managua. Formation F2 contains the ~60 ka basaltic–andesitic Fontana tephra erupted from the Las Nubes Caldera of the Las Sierras complex 15 km to the S, the 25 ka Upper Apoyo tephra from the Apoyo Caldera 35 km to the SE, and the Lower (~17 ka) and Upper (12.4 ka) Apoyeque tephras from the Chiltepe volcanic complex 15 km to the NW. These tephras are separated by weathering horizons and paleosols indicating dry climatic conditions. Fluvial deposits of a SSW-NNE running paleo-river system build formation F3. The fluvial sediments contain, from bottom to top, scoriae from the ~6 ka basaltic San Antonio tephra, pumice lapilli from the Apoyo and Apoyeque tephras and the 6.1 ka Xiloà tephra, and scoriae derived from the Fontana tephra. The fluvial sediment succession thus reflects progressively deeper carving erosion in the southern highlands (where a large-amplitude regional erosional unconformity exists at the appropriate stratigraphic level) that began after ~6 ka. This suggests that the mid-Holocene tropical high-precipitation climatic phase affected western Nicaragua about a thousand years later than other circum-Caribbean regions. The end of the wet climate phase ~3 ka ago is recorded by a deep weathering zone and paleosol atop formation F3 prior to the Tiscapa eruption. Formation F4 is the Tiscapa tuffring composed of pyroclastic surge and fallout deposits that cover a minimum area of 1.2 km2. The 4 × 109 kg of erupted basaltic magma is compositionally and genetically related to the low-Ti basalts of the N–S striking Nejapa-Miraflores volcanic–tectonic alignment 5 km to the West of Tiscapa. Ascent and eruption mode of the Tiscapa magma were controlled by the Tiscapa fault that has a very active seismic history as it achieved 12 m displacement in about 3000 years. Managua city is thus exposed to continued seismic and volcanic risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号