首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study (U‐Th)/He dating of the Penglai zircons, which occur as abundant megacrysts in Neogene alkaline basalts in northern Hainan Province, south‐eastern China, was undertaken. A weighted mean age of 4.06 ± 0.35 Ma (2s) with a mean square weighted deviation (MSWD) of 1.79 was obtained from eighteen fragments of four zircon megacrysts using single‐crystal laser fusion He determinations and the U‐Th isotope dilution (ID) method. The (U‐Th)/He ages are consistent, homogeneous and systematically slightly younger than the preferred 206Pb/238U age of 4.4 ± 0.1 Ma (95% confidence interval) determined by ID‐TIMS and subsequently published U‐Pb results. The U‐Pb isotopic system in zircon has a high closure temperature of ~ 900 °C, and the preferred U‐Pb age may record both the time since eruption and the zircon residence time in the magma chamber. In contrast, the closure temperature of the zircon (U‐Th)/He system is ~ 190 °C and the zircon megacrysts were brought quickly to the surface by the host basaltic magma. Thus, the (U‐Th)/He age represents the timing of the eruption. Based on the unlimited quantity, large grain size, mostly weak broad zoning, rapid cooling and homogenous (U‐Th)/He ages, we consider the Penglai zircons suitable for use as a reference material in (U‐Th)/He isotope geochronology.  相似文献   

2.
Dating of young (<1 Ma) geological events has long been a challenge for geochronologists. Combining (U‐Th)/He with U‐Pb or U‐Th‐disequilibrium dating methods offers a unique dating tool that can address this important period. We present a new methodology that combines U‐Pb LA‐ICP‐MS and (U‐Th)/He dating of zircon and use it to date two Pleistocene marker tephras (A1Pm and DPm) from the Omachi Tephra suite (Japan). A1Pm and DPm yield U‐Pb ages in the range of 350–850 and ~140–630 ka, respectively, documenting protracted periods of zircon crystallisation (100's of k.y.) prior to eruption. (U‐Th)/He ages constrain the eruption ages of the A1Pm and DPm tephras to 375 ± 13 and 97.1 ± 7.3 ka, respectively, and are in agreement with published estimates. This study demonstrates the potential of combined zircon U‐Pb LA‐ICP‐MS and (U‐Th)/He dating to constrain magmatic and eruption events in the critical ~100 ka–1 Ma interval.  相似文献   

3.
The dating of volcanic tephras forms a critical cornerstone of chronostratigraphy and is paramount for the resolution of the geological timescale. (U‐Th[‐Sm])/He dating is an emerging tool in Quaternary tephrochronology and ideally suited to date tephras <1 Ma. We present zircon, magnetite and apatite (U‐Th[‐Sm])/He combined with zircon U‐Pb data for a Pleistocene tephra in syn‐rift strata of the Woodlark Rift in Papua New Guinea. The results reveal a young He age mode (~0.5 to 0.8 Ma), consistent with an autocrystic zircon U‐Pb crystallisation age of 0.8 ± 0.1 Ma, as well as a broad range of older (U‐Th[‐Sm])/He (~1.6 to 10.2 Ma) and U‐Pb (~4.4 to 107 Ma) ages. These data demonstrate the potential of integrated U‐Pb and (U‐Th[‐Sm])/He multi‐method chronometry for dating the youngest coherent age mode, detecting contaminant grains and evaluating the isotopic systematics of these techniques.  相似文献   

4.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

5.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

6.
The accuracy and validation of geo- and thermochronological dating hinges on the availability of well-characterised age reference materials. The Mesoproterozoic gabbroic anorthosite FC1 from the Duluth Complex, Minnesota is a reference material for zircon U-Pb and a suggested reference material for apatite fission-track dating. We evaluate FC1 as (U-Th)/He reference material, and determine its apatite U-Pb, and zircon and apatite (U-Th)/He age. Our dating results constrain the thermal history of FC1, showing that fast cooling occurred between ~ 1099 and 1040 Ma from ≥ 600 °C to ~ 200 °C. The zircon (U-Th)/He data from air-abraded grains give a robust isochron age of 1037 ± 25 Ma (2s) without overdispersion. The within-grain homogeneity of U and Th, the availability of FC1 zircon, and the absence of radiation-damage effects on the (U-Th)/He age support its use as reference material. Unabraded zircon grains give lower and more dispersed ages, highlighting the usefulness of air abrasion to control for α-ejection in (U-Th)/He dating. Our apatite (U-Th-Sm)/He single-grain ages vary between 180 and 300 Ma. Their wide dispersion argues against the use of FC1 apatite as (U-Th-Sm)/He reference material and makes the interpretation of their low-temperature thermal history complicated.  相似文献   

7.
In North Africa, the Algerian margin is made of basement blocks that drifted away from the European margin, namely the Kabylia, and docked to the African continental crust in the Early Miocene. This young margin is now inverted, as dated Miocene (17 Ma) granites outcrop alongshore, evidencing kilometre‐scale exhumation since their emplacement. Age of inversion is actually unknown, although Pliocene is often considered in the offshore domain. To decipher the exhumation history of the margin between 17 and 5 Ma, we performed a coupled apatite fission track (AFT) and (U–Th–Sm)/He (AHe) study in the Cap Bougaroun Miocene granite. AFT dates range between 7 ± 1 and 10 ± 1 Ma, and mean AHe dates between 8 ± 2 and 10 ± 1 Ma. These data evidence rapid and multi‐kilometre exhumation during Tortonian times. This event cannot be related to slab break‐off but instead to the onset of margin inversion that has since developed as an in‐sequence north‐verging deforming prism.  相似文献   

8.
The Tiegelongnan is the first discovered porphyry–epithermal Cu (Au) deposit of the Duolong ore district in Tibet, China. In order to constrain the thermal history of this economically valuable deposit and the rocks that host it, eight samples were collected to perform a low‐temperature thermochronology analysis including apatite fission track, apatite, and zircon (U‐Th)/He. Apatite fission track ages of all samples are between 34 ± 3 and 67 ± 5 Ma. Mean apatite (U‐Th)/He ages show wide distribution, ranging from 29.3 ± 2.5 to 56.4 ± 9.1 Ma. Mean zircon (U‐Th)/He ages range from 79.5 ± 12.0 to 97.9 ± 4.4 Ma. The exhumation rate of the Tiegelongnan deposit was 0.086 km m.y.?1 between 98 and 47 Ma and decreased to 0.039 km m.y.?1 since 47 Ma. The mineralized intrusion was emplaced at a depth of about 1400 m in the Tiegelongnan deposit. Six cooling stages were determined through HeFTy software according to low‐temperature thermochronology and geochronology data: (i) fast cooling stage between 120 and 117 Ma, (ii) fast cooling stage between 117 and 100 Ma, (iii) slow cooling stage between100 and 80 Ma, (iv) fast cooling stage between 80 and 45 Ma, (v) slow cooling stage between 45 and 30 Ma, and (vi) slow cooling stage (<30 Ma). Cooling stages between 120 and 100 Ma are mainly caused by magmatic–hydrothermal evolution, whereas cooling stages after 100 Ma are mainly caused by low‐temperature thermal–tectonic evolution. The Bangong–Nujiang Ocean subduction led to the formation of the Tiegelongnan ore deposit, which was buried by the Meiriqiecuo Formation andesite lava and thrust nappe structure; then, the Tiegelongnan deposit experienced uplift and exhumation caused by the India–Asia collision.  相似文献   

9.
(U‐Th)/He ages on apatite obtained in the vicinity of the Têt fault hydrothermal system show a large variability. In the inner damage zone adjacent to the fault core, where fluid flows are concentrated, AHe ages display a large scatter (3–41 Ma) and apatite ageing. Samples from the outer damage zone show young ages with less dispersion (0.9–21.1 Ma) and apatite rejuvenation. Outside the damage zone, ages are consistent with the regional exhumation history between 20 and 12 Ma. The important age dispersion found in the damage zone is interpreted as the result of 4He mobility during fluid infiltration. Our results show that thermochronological data close to a fault should be interpreted with caution, but may offer a new tool for geothermal exploration.  相似文献   

10.
Cambrian siliciclastic sequences along the Dead Sea Transform (DST) margin in southern Israel and southern Jordan host both detrital fluorapatite [D‐apatite] and U‐rich authigenic carbonate‐fluorapatite (francolite) [A‐apatite]. D‐apatite and underlying Neoproterozoic basement apatite yield fission‐track (FT) data reflecting Palaeozoic–Mesozoic sedimentary cycles and epeirogenic events, and dispersed (U–Th–Sm)/He (AHe) ages. A‐apatite, which may partially or completely replace D‐apatite, yields an early Miocene FT age suggesting formation by fracturing, hydrothermal fluid ascent and intra‐strata recrystallisation, linked to early DST motion. The DST, separating the African and Arabian plates, records ~105 km of sinistral strike‐slip displacement, but became more transtensional post‐5 Ma. Helium diffusion measurements on A‐apatite are consistent with thermally activated volume diffusion, indicating Tc ~52 to 56 ± 10°C (cooling rate 10°C/Ma). A‐apatite AHe data record Pliocene cooling (~35 to 40°C) during the transtensional phase of movement. This suggests that timing of important milestones in DST motion can be discerned using A‐apatite low‐temperature thermochronology data alone.  相似文献   

11.
New apatite and zircon (U–Th)/He and apatite fission‐track (FT) data allow constraining the timing of Miocene–Pliocene extensional exhumation that affected the central part of the Dinarides‐Albanides‐Hellenides orogen. Apatite (U–Th)/He ages in the northern and western Internal Albanides range from 57 to 17 Ma, contrasting to younger ages of 5.2–9.3 Ma in the eastern Internal Albanides. Eastward younging is also reflected in zircon (U–Th)/He ages varying from 101 Ma in the north‐western Internal Albanides to 19–50 Ma in the east, as well as in recently published apatite FT ages. Thermal history predictions with the new data point to a phase of rapid exhumation of the eastern Internal Albanides around 6–4 Ma, while the western Internal Albanides record slower continuous exhumation since the Eocene. This asymmetric exhumation pattern is most likely linked to extensional reactivation of NE–SW‐trending thrusts east of the Mirdita zone and within the Korabi zone of the eastern Internal Albanides.  相似文献   

12.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

13.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

14.
Zircon megacrysts from the Mud Tank carbonatite, Australia, are being used in many laboratories as a reference material for LA‐ICP‐MS U‐Pb dating and trace element measurement, and LA‐MC‐ICP‐MS determination of Hf isotopes. We summarise a database of > 10000 analyses of Mud Tank zircon (MTZ), collected from 2000 to 2018 during its use as a secondary reference material for simultaneous U‐Pb and trace element analysis, and for Hf‐isotope analysis. Trace element mass fractions are highest in dark red‐brown stones and lowest in colourless and gem‐quality ones. Individual unzoned grains can be chemically homogeneous, while significant variations in trace element mass fraction are associated with oscillatory zoning. Chondrite‐normalised trace element patterns are essentially parallel over large mass fraction ranges. A Concordia age of 731.0 ± 0.2 Ma (2s,= 2272) is taken as the age of crystallisation. Some grains show lower concordant to mildly discordant ages, probably reflecting minor Pb loss associated with cooling and the Alice Springs Orogeny (450–300 Ma). Our weighted mean 176Hf/177Hf is 0.282523 ± 10 (2s, n = 9350); the uncertainties on this ratio reflect some heterogeneity, mainly between grains. A few analyses suggest that colourless grains have generally lower 176Hf/177Hf. MTZ is a useful secondary reference material for U‐Pb and Hf‐isotope analysis, but individual grains need to be carefully selected using CL imaging and tested for homogeneity, and ideally should be standardised by solution analysis.  相似文献   

15.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

16.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

17.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

18.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

19.
We introduce and propose zircon M257 as a future reference material for the determination of zircon U‐Pb ages by means of secondary ion mass spectrometry. This light brownish, flawless, cut gemstone specimen from Sri Lanka weighed 5.14 g (25.7 carats). Zircon M257 has TIMS‐determined, mean isotopic ratios (2s uncertainties) of 0.09100 ± 0.00003 for 206pb/238U and 0.7392 ± 0.0003 for 207pb/235U. Its 206pb/238U age is 561.3 ± 0.3 Ma (unweighted mean, uncertainty quoted at the 95% confidence level); the U‐Pb system is concordant within uncertainty of decay constants. Zircon M257 contains ~ 840 μg g?1 U (Th/U ~ 0.27). The material exhibits remarkably low heterogeneity, with a virtual absence of any internal textures even in cathodoluminescence images. The uniform, moderate degree of radiation damage (estimated from the expansion of unit‐cell parameters, broadening of Raman spectral parameters and density) corresponds well, within the “Sri Lankan trends”, with actinide concentrations, U‐Pb age, and the calculated alpha fluence of 1.66 × 1018 g?1. This, and a (U+Th)/He age of 419 ± 9 Ma (2s), enables us to exclude any unusual thermal history or heat treatment, which could potentially have affected the retention of radiogenic Pb. The oxygen isotope ratio of this zircon is 13.9%o VSMOW suggesting a metamorphic genesis in a marble or calc‐silicate skarn.  相似文献   

20.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号