首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scaled boundary finite‐element method, a semi‐analytical computational scheme primarily developed for dynamic stiffness of unbounded domains, is applied to the analysis of unsteady seepage flow problems. This method is based on the finite‐element technology and gains the advantages of the boundary element method as well. Only boundary of the domain is discretized, no fundamental solution is required and singularity problems can be modeled rigorously. Anisotropic and non‐homogeneous materials satisfying similarity are modeled with no additional efforts. In this study, firstly, formulation of the method for the transient seepage flow problems is derived followed by its solution procedures. The accuracy, simplicity and applicability of the method are demonstrated via four numerical examples of transient seepage flow – three of them are available in the literature. Homogenous, non‐homogenous, isotropic and anisotropic material properties are considered to show the versatility of the technique. Excellent agreement with the finite‐element method is observed. The method out‐performs the finite‐element method in modeling singularity points. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A finite element procedure is developed to accurately locate the free surface of unconfined seepage flow through porous media. The free surface is taken as the boundary between wet and dry soils, with flow in the saturated region characterized by Darcy's law. The method involves equations and meshing which are fully consistent with a general formulation for geotechnical engineering problems involving simultaneous solution of pore fluid pressures and soil skeleton displacements. Accuracy and versatility of the proposed procedure are demonstrated by solving various unconfined seepage flow problems through earth structures. Free surfaces and flownets are presented for the calculated flow fields.  相似文献   

3.
One major difficulty in seepage analyses is finding the position of phreatic surface which is unknown at the beginning of solution and must be determined in an iterative process. The objective of the present study is to develop a novel non‐boundary‐fitted mesh finite‐element method capable of solving the unconfined seepage problem in domains with arbitrary geometry and continuously varied permeability. A new non‐boundary‐fitted finite element method named as smoothed fixed grid finite element method (SFGFEM) is used to simplify the solution of variable domain problem of unconfined seepage. The gradient smoothing technique, in which the area integrals are transformed into the line integrals around edges of smoothing cells, is used to obtain the element matrices. The solution process starts with an initial guess for the unknown boundary and SFGFEM is used to approximate the field variable. The boundary shape is then modified to eventually satisfy nonlinear boundary condition in an iterative process. Some numerical examples are solved to evaluate the applicability of the proposed method and the results are compared with those available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
骆冠勇  曹洪  房营光  范雨 《岩土力学》2007,28(1):173-178
为解决城区渗流场中缝隙多、区域的大尺度与物体的小尺寸相差了几个数量级,有限元分析上存在的困难,根据缝隙流动的解析解,经适当地简化,将缝隙附近的渗流场分为缝外区和缝内区两部分,将缝外区流动简化为一个半径为半缝宽的井流,缝内区流动简化为一个均匀流。引入附加阻力系数,考虑缝隙出入口附近的由于过水断面突然变化而引的局部水头损失,并得到附加阻力系数的表达式。利用该式,结合渗流场中井点水头的修正公式,得到了能有效模拟渗流场中建筑物间缝隙的修正线单元公式。利用该线单元编制了相关程序模拟城区渗流场中的缝隙,使得缝隙出入口处的网格尺寸为缝隙两边的建筑物边长1/3~1/4时就能得到较为准确的结果,避免了区域性渗流场中小尺寸物体的网格划分问题,通过算例验证了该公式的精度和边界适应性。  相似文献   

5.
为解决城区渗流场中缝隙多、区域的大尺度与物体的小尺寸相差了几个数量级,有限元分析上存在的困难,根据缝隙流动的解析解,经适当地简化,将缝隙附近的渗流场分为缝外区和缝内区两部分,将缝外区流动简化为一个半径为半缝宽的井流,缝内区流动简化为一个均匀流。引入附加阻力系数,考虑缝隙出入口附近的由于过水断面突然变化而引的局部水头损失,并得到附加阻力系数的表达式。利用该式,结合渗流场中井点水头的修正公式,得到了能有效模拟渗流场中建筑物间缝隙的修正线单元公式。利用该线单元编制了相关程序模拟城区渗流场中的缝隙,使得缝隙出入口处的网格尺寸为缝隙两边的建筑物边长1/3~1/4时就能得到较为准确的结果,避免了区域性渗流场中小尺寸物体的网格划分问题,通过算例验证了该公式的精度和边界适应性。  相似文献   

6.
By extending Darcy's law to the dry domain above the free surface and specifying the boundary condition on the potential seepage surfaces as Signorini's type, a partial differential equation (PDE) defined in the entire domain of interest is formulated for non‐steady seepage flow problems with free surfaces. A new parabolic variational inequality (PVI) formulation equivalent to the PDE formulation is then proposed, in which the flux part of the complementary condition of Signorini's type in the PDE formulation is transformed into natural boundary condition. Consequently, the singularity at the seepage points is eliminated and the difficulty in selecting the trial functions is significantly reduced. By introducing an adaptive penalized Heaviside function in the finite element analysis, the numerical stability of the discrete PVI formulation is well guaranteed. The proposed approach is validated by the existing laboratory tests with sudden rise and dropdown of water heads, and then applied to capture the non‐steady seepage flow behaviors in a homogeneous rectangular dam with five drainage tunnels during a linear dropdown of upstream water head. The non‐steady seepage flow in the surrounding rocks of the underground powerhouse in the Shuibuya Hydropower Project is further modeled, in which a complex seepage control system is involved. Comparisons with the in situ monitoring data show that the calculation results well illustrate the non‐steady seepage flow process during impounding and the operation of the reservoir as well as the seepage control effects of the drainage hole arrays and drainage tunnels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A major challenge in seepage analysis is to locate the phreatic surface in an unconfined aquifer. The phreatic surface is unknown and assumed as a discontinuity separating the seepage domain into dry and wet parts, thus should be determined iteratively with special schemes. In this study, we systematically developed a new numerical manifold method (NMM) model for unconfined seepage analysis. The NMM is a general numerical method for modeling continuous and discontinuous deformation in a unified mathematical form. The novelty of our NMM model is rooted in the NMM two‐cover‐mesh system: the mathematical covers are fixed and the physical covers are adjusted with iterations to account for the discontinuity feature of the phreatic surface. We developed an energy‐work seepage model, which accommodates flexible approaches for boundary conditions and provides a form consistent with that in mechanical analysis with clarified physical meaning of the potential energy. In the framework of this energy‐work seepage model, we proposed a physical concept model (a pipe model) for constructing the penalty function used in the penalty method to uniformly deal with Dirichlet, Neumann, and material boundaries. The new NMM model was applied to study four example problems of unconfined seepage with varying geometric shape, boundary conditions, and material domains. The comparison of our simulation results to those of existing numerical models for these examples indicates that our NMM model can achieve a high accuracy and faster convergence speed with relatively coarse meshes. This NMM seepage model will be a key component of our future coupled hydro‐mechanical NMM model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A challenging computational problem arises when a discrete structure (e.g. foundation) interacts with an unbounded medium (e.g. deep soil deposit), particularly if general loading conditions and non‐linear material behaviour is assumed. In this paper, a novel method for dealing with such a problem is formulated by combining conventional three‐dimensional finite‐elements with the recently developed scaled boundary finite‐element method. The scaled boundary finite‐element method is a semi‐analytical technique based on finite‐elements that obtains a symmetric stiffness matrix with respect to degrees of freedom on a discretized boundary. The method is particularly well suited to modelling unbounded domains as analytical solutions are found in a radial co‐ordinate direction, but, unlike the boundary‐element method, no complex fundamental solution is required. A technique for coupling the stiffness matrix of bounded three‐dimensional finite‐element domain with the stiffness matrix of the unbounded scaled boundary finite‐element domain, which uses a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system, is described. The accuracy and computational efficiency of the new formulation is demonstrated through the linear elastic analysis of rigid circular and square footings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
罗焕炎  胡尊国 《地质科学》1974,9(3):283-290
均质含水层中的自由水面(潜水)问题,虽然有各种各样的分析解和近似解,但对非均质条件还缺乏合理的解答。目前虽可采用虚构流网的概念相当准确地计算侧向补给情况的潜水井流量,但由于这种方法不能计算渗流场的水头分布,仍不易把它引用到不稳定渗流问题中去。  相似文献   

10.
A simple and effective extension to the boundary element method for solving Laplace'S equation (?2u = 0) for boundary value problems is presented to solve steady confined and (or) steady unconfined seepage problems in zoned anisotropic mediums. Sample problems indicating the accuracy of results are given.  相似文献   

11.
In modeling of many geomechanics problems such as underground openings, soil-foundation structure interaction problems, and in wave propagation problems through semi-infinite soil medium the soil is represented as a region of either infinite or semi-infinite extent. Numerical modeling of such problems using conventional finite elements involves a truncation of the far field in which the infinite boundary is terminated at a finite distance. In these problems, appropriate boundary conditions are introduced to approximate the solution of the infinite or semi-infinite boundaries as closely as possible. However, the task of positioning the finite boundary in conventional finite element discretization and the definition of the boundary and its conditions is very delicate and depends on the modeller's skill and intuition. Moreover, such a choice is influenced by the size of the domain to be discretized. Consequently, the dimensions of the global matrices and the time required for solution of the problem will increase considerably and also selection of the arbitrary location of truncated boundary may lead to erroneous result. In order to over come these problems, mapped infinite elements have been developed by earlier researchers (Simoni and Schrefier, 1987). In the present work the applicability of infinite element technique is examined for different geomechanics problems. A computer program INFEMEP is developed based on the conventional finite element and mapped infinite element technique. It is then validated using selected problems such as strip footing and circular footing. CPU time taken to obtain solutions using finite element approach and infinite element approach was estimated and presented to show the capability of coupled modeling in improving the computational efficiency. Mesh configurations of different sizes were used to explore the enhancement of both computational economy and solution accuracy achieved by incorporation of infinite elements to solve elastic and elasto-plastic problems in semi-infinite/finite domain as applied to geotechnical engineering. © Rapid Science Ltd. 1998  相似文献   

12.
A novel finite element method has been proposed in this paper for the solution of seepage problems economically and accurately. In this method the governing equation and the prescribed boundary conditions are transformed so that they refer to a suitable logarithmically condensed ‘image’ space; the physical problem domain is also mapped into the image space. The transformed equation is then solved in the image space using standard finite elements, subject to the transformed boundary conditions. Because physical space is logarithmically condensed in the image space, the proposed method is capable of dealing with large or very large aspect ratio seepage problems economically and accurately. The validity of the method has been demonstrated by means of a number of examples including anisotropy and non-linearity. In all cases an excellent degree of accuracy was achieved, efficiently and economically.  相似文献   

13.
A new artificial boundary approach for transient seepage problems in unbounded domain is presented. The artificial boundary condition at the truncated boundary is derived from the analytical solutions for transient seepage problems in one dimension, including solutions, respectively, for flow in one‐dimensional infinite space and for radial flow in an infinite layer, and then it is tentatively applied for some two dimensional problems in addition to the one‐dimensional problems mentioned above. The boundary conditions derived relate the time‐dependent boundary flux with the time derivative of the hydraulic head at the truncated boundary, which makes the implementation much easier compared with the infinite element method. The accuracy and efficiency of the artificial boundary are validated by several numerical examples, which shows that the proposed boundary can give very good results for one‐dimensional transient seepage problems, as expected, whereas reasonable results can be also obtained for two‐dimensional problems, such as two‐dimensional axisymmetric flow and flow in an infinite plane. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
无压渗流问题分析的多节点有限元方法   总被引:2,自引:1,他引:1  
王兆清  李术才  李树忱 《岩土力学》2008,29(10):2647-2650
采用基于平均值插值的多节点有限元方法分析有自由面渗流问题。在自由面附近采用多节点单元逼近自由面,利用平均值插值建立多节点单元的形函数,在远离自由面的区域采用四边形/三角形单元剖分。给定一个初始自由面位置,通过对渗流控制方程的多节点有限元求解,根据自由面上节点水头值判断自由面节点的调整方向和大小,最终迭代求出自由面的位置。土坝渗流问题的数值分析表明了所提方法的有效性和足够的计算精度。  相似文献   

15.
Numerical analysis of transient seepage in unbounded domains with unsteady boundary conditions requires a more sophisticated artificial boundary approach to deal with the infinite character of the domain. To that end, a local artificial boundary is established by simplifying a global artificial boundary. The global artificial boundary conditions (ABCs) at the truncated boundary are derived from analytical solutions for one‐dimensional axisymmetric diffusion problems. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global ABCs are simplified to local ABCs to significantly enhance the computational efficiency. The proposed local ABCs are implemented in a finite element computer program so that the solutions to various seepage problems can be calculated. The proposed approach is first verified by the computation of a one‐dimensional radial flow problem and then tentatively applied to more general two‐dimensional cylindrical problems and planar problems. The solutions obtained using the local ABCs are compared with those obtained using a large element mesh and using a previously proposed local boundary. This comparison demonstrates the satisfactory performance and obvious superiority of the newly established boundary to the other local boundary. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A new formulation of the element‐free Galerkin (EFG) method is developed for solving coupled hydro‐mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro‐mechanical problems. Examples are studied and compared with closed‐form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro‐mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
在抽水条件下水位随空间和时间变化的预测,依赖于潜水层的透水率和给水度的准确测定。如何利用抽水试验资料求这两种参数也是一个关键。这种相辅相成的关系是有效地开发利用地下水资源的前提。  相似文献   

18.
A high‐frequency open boundary has been developed for the transient seepage analyses of semi‐infinite layers with a constant depth. The scaled boundary finite element equation of pore water pressure is formulated first in the frequency domain. With the eigenvalue problem, the equation can be decoupled into modal equations whose modal dynamic permeability equation can be determined. The continued fraction technique is adopted to formulate the continued fraction solution in the frequency domain. All constants in the solution are determined recursively at the high‐frequency limit. By introducing auxiliary variables and the continued fraction solution to the relationship between the prescribed seepage flow and the pore water pressure in the frequency domain, the open boundary condition is obtained. After transformed to the time domain, the open boundary condition is expressed as a system of fractional differential equations. No convolution integral is required. The accuracy of the analysis results increases with the increasing orders of continued fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier–Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle–fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.  相似文献   

20.
交叉裂隙水流N-S方程有限元分析   总被引:2,自引:0,他引:2       下载免费PDF全文
运用有限元理论从N-S方程(Navier-Stokesequation)出发,研究了交叉裂隙水流的基本特征.通过有限元计算结果与传统网络水力学算法及实验成果的对比分析,论述了在裂隙渗流分析中,传统网络计算方法的近似程度完全能为工程要求所接受.网络裂隙渗流分析计算时,不必再单独考虑裂隙水的偏流问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号