首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper re-evaluates the origin of some peculiar patterns of ground deformation in the Central Apennines, observed by space geodetic techniques during the two earthquakes of the Colfiorito seismic sequence on September 26th, 1997. The surface displacement field due to the fault dislocation, as modelled with the classic Okada elastic formulations, shows some areas with high residuals which cannot be attributed to non-simulated model complexities. The residuals were investigated using geomorphological analysis, recognising the geologic evidence of deep-seated gravitational slope deformations (DSGSD) of the block-slide type. The shape and direction of the co-seismic ground displacement observed in these areas are correlated with the expected pattern of movement produced by the reactivation of the identified DSGSD. At least a few centimetres of negative “Line of Sight” ground displacement was determined for the Costa Picchio, Mt. Pennino, and Mt. Prefoglio areas. A considerable horizontal component of movement in the Costa Picchio DSGSD is evident from a qualitative analysis of ascending and descending interferograms. The timing of the geodetic data indicates that the ground movement occurred during the seismic shaking, and that it did not progress appreciably during the following months. This work has verified the seismic triggering of DSGSD previously hypothesized by many researchers. A further implication is that in the assessment of DSGSD hazard seismic input needs to be considered as an important cause of accelerated deformation.  相似文献   

2.
In the regional geodetic network of the Russian Far East, an active fault zone of the Kamchatka peninsula has been selected in order to study the relation between seismic activity and deformation. This paper provides the first results of a detailed and high-precision 3-km long levelling profile, along which geodetic data have been collected weekly for almost three years. The data processing and analytical methods that were originally used have been elaborated for this particular type of very small local network. In the active fault zone, two distinct ways of releasing accumulated potential energy, i.e. seismicity and 'fault superintensive movements', have been registered. The inverse correlation that is discovered between deformation rate and seismic activity could be useful in earthquake forecasts.  相似文献   

3.
The Western Pyrenees presents a diffuse and moderate ( M ≤ 5.7) instrumental seismicity. It nevertheless historically suffered from strong earthquakes (I = IX MSK). The seismic sources of these events are not yet clearly identified. We focus on the Arudy (1980) epicentral area ( M = 5.1) and propose here the reactivation of early Cretaceous normal faults of the Iberian margin as a potential source. The late Cretaceous inversion of this basin, first in a left-lateral strike-slip mode and then in a more frontal convergence, resulted in a pop-up geometry. This flower structure attests of the presence of a deep crustal discontinuity.
The present-day geodynamic arrangement suggests that this accident is reactivated in a right lateral mode. This reactivation leads to a strain partitioning between the deep discontinuity that accommodates the lateral component of the motion and shallow thrusts, rooted on this discontinuity. These thrusts accommodate the shortening component of the strain. The distribution of the instrumental seismicity fits well the structural model of the Arudy basin. Whatever the compressive regional context, the structural behaviour of the system explains too the extensive stress tensor determined for the Arudy crisis if we interpret it in terms of strain ellipsoid. Indeed numerical modelling has shown that this concomitant activity of strike-slip and thrust faulting results in an extensive component that can rise 50 per cent of the finite strain.
We identify too a 25–30 km long potential seismic source for the Arudy area. The size of the structure and its potential reactivation in a strike-slip mode suggest that a maximum earthquake magnitude of ∼6.5 could be expected. The extrapolation of this model at the scale of the Western Pyrenees allows to propose other potential sources for major regional historical earthquakes.  相似文献   

4.
Crustal structure and local seismicity in western Anatolia   总被引:4,自引:0,他引:4  
Western Anatolia is one of the most seismically active continental regions in the world and much of it has been undergoing NS-directed extensional deformation since Early Miocene time. In a cooperative study, seismologists from Saint Louis University, USA and Dokuz Eylül University, Turkey, deployed five broad-band and 45 short-period seismic stations in western Anatolia between 2002 November and 2003 October. The present paper uses data collected by this network and the data from five permanent stations operated by the Kandilli Observatory and Earthquake Research Institute to map the hypocentral distribution of local earthquakes and to determine crustal structure of western Anatolia. We obtained a 1-D P -wave crustal velocity model using a generalized scheme for simultaneously obtaining earthquake locations and a crustal velocity model. Our velocity model is characterized by crustal velocities that are significantly lower than average continental values. The low velocities may be associated with high crustal temperatures, a high degree of fracture, or the presence of fluids at high pore pressure in the crust. We located 725 local earthquakes and classified them in three categories. We found that the level of seismic activity in western Anatolia is higher than previously reported. Station delays resulting from the inversion process correlate with near-surface geology and the thickness of sediments throughout the region. The hypocentral distribution of the events indicates that peak seismicity for the region occurs at depths of about 10 km.  相似文献   

5.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

6.
Detailed interpretation of marine seismic data shows the presence of an extending, active, dextral strike-slip fault zone at the south edge of the Mount Athos Peninsula. The zone is over 100 km long and has both transtensional and transpressive features observable on the seismic lines. We suggest that dextral strike-slip displacement along the zone is on the order of 5–7 km. The structure and fault patterns of Recent deformation in the Central North Aegean Trough is typical of strike-slip tectonism.  相似文献   

7.
Rates of active deformation in the Aegean Sea and surrounding regions   总被引:3,自引:0,他引:3  
Abstract Average strain rates are calculated from earthquakes in the period 1908-81 that occurred in the Aegean Sea extensional region, and in the convergent zone associated with the Hellenic Trench. In spite of large uncertainties resulting from the use of an MS : Mo relationship, seismic N-S extensional rates in the Aegean are in the region 20–60 mm yr-1 whereas seismic shortening rates in the Hellenic Trench are less than about 15 mm yr-1. This is surprising because Africa and Eurasia are known to be converging, not separating. This apparent anomaly is caused by most of the convergence in the Hellenic Trench occurring aseismically. By contrast, the seismic extensional rates in the Aegean agree quite well with those expected from other arguments. The present day extensional rates are sufficiently high for McKenzie's instantaneous stretching model to be applicable. There is some evidence that these high extensional rates have operated throughout the last 5 Myr.  相似文献   

8.
The migration of teleseismic receiver functions yields high-resolution images of the crustal structure of western Crete. Data were collected during two field campaigns in 1996 and 1997 by networks of six and 47 short-period three-component seismic stations, respectively. A total of 1288 seismograms from 97 teleseismic events were restituted to true ground displacement within a period range from 0.5 to 7 s. The application of a noise-adaptive deconvolution filter and a new polarization analysis technique helped to overcome problems with local coda and noise conditions. The computation and migration of receiver functions results in images of local crustal structures with unprecedented spatial resolution for this region. The crust under Crete consists of a continental top layer of 15–20 km thickness above a 20–30 km thick subducted fossil accretionary wedge with a characteristic en echelon fault sequence. The downgoing oceanic Moho lies at a depth of 40–60 km and shows a topography or undulation with an amplitude of several kilometres. As a consequence of slab depth and distribution of local seismicity, the Mediterranean Ridge is interpreted as the recent accretionary wedge.  相似文献   

9.
Summary. Based on accurately located 23 very shallow earthquakes ( h = 1–14 km) in northern and central Greece by portable networks of seismic stations and by the joint epicentre method, the travel times of the Pn -waves from the foci of these earthquakes to the sites of 54 permanent stations in the Balkan region have been determined. The travel times of Pn -waves in the central and eastern part of the area (eastern Greece, south-eastern Yugoslavia, the Aegean Sea, Bulgaria, southern Romania, western Turkey) fit a straight line very well with the Pn velocity equal to 7.9 ± 0.1 km s-1. On the contrary, the travel times of Pn -waves to stations in the western part of the area (Albania, western Greece) do not fit this curve because the Pn -waves travelling to these stations are delayed by more than 1 s due to the thicker crust under the Dinarides–Hellenides mountain range. Time delays for Pn -waves have been calculated for each permanent station in the Balkan area with respect to the mean travel-time curve of these waves in the central and eastern part of the area. Corrections of the travel times for these delays contribute very much to the improvement of the accuracy in the location of the shallow earthquakes in the Aegean and surrounding area.  相似文献   

10.
On the resolving power of tomographic images in the Aegean area   总被引:2,自引:0,他引:2  
b
The imaging of upper mantle heterogeneity by seismic tomography is strongly limited by the uneven global distribution both of seismic recording stations and earthquake sources. This can result in a loss of resolution and significance in the final image, particularly when a sparse data set contains few ray paths which intersect at sufficiently high angles in the volume of interest. In order to investigate the theoretical resolving power of a previously published tomographic image of the Aegean area, synthetic tests of the inversion procedure using a ray-path matrix obtained in this previous study for local and teleseismic P -waves were carried out. The aim was to examine the extent to which the shape of a synthetic lithospheric slab penetrating to different depths is inherently distorted by the tomographic imaging procedure, and to compare the synthetic tomographic images with the results from the actual inversion. The distortion is found to take the form of an artificial stretching of the lithospheric slab. The maximum 'stretching factor', as indicated by the downdip displacement of the peak amplitude of the synthetic high-velocity anomaly, is found to be a factor of 2 or so, though the distortion is usually less than this. The peak amplitude of the tomographic image of a lithospheric slab is found from the inversion of traveltime data to be at depths at or below 400 km. This indicates that the high-velocity lithospheric slab in the Aegean penetrates deeper than the Benioff zone seismicity of about 200 km. However, no constraints of the maximum depth of penetration could be established with the data set used in the present work.  相似文献   

11.
We perform analytical and numerical studies of scaling relations of earthquakes and partition of elastic strain energy between seismic and aseismic components using a thermodynamically based continuum damage model. Brittle instabilities occur in the model at critical damage level associated with loss of convexity of the strain energy function. A new procedure is developed for calculating stress drop and plastic strain in regions sustaining brittle instabilities. The formulation connects the damage rheology parameters with dynamic friction of simpler frameworks, and the plastic strain accumulation is governed by a procedure that is equivalent to Drucker–Prager plasticity. The numerical simulations use variable boundary forces proportional to the slip-deficit between the assumed far field plate motion and displacement of the boundary nodes. These boundary conditions account for the evolution of elastic properties and plastic strain in the model region. 3-D simulations of earthquakes in a model with a large strike-slip fault produce scaling relations between the scalar seismic potency, rupture area, and stress drop values that are in good agreement with observations and other theoretical studies. The area and potency of the simulated earthquakes generally follow a linear log–log relation with a slope of 2/3, and are associated with stress drop values between 1 and 10 MPa. A parameter-space study shows that the area-potency scaling is shifted to higher stress drops in simulations with parameters corresponding to lower dynamic friction, more efficient healing, and higher degree of seismic coupling.  相似文献   

12.
In southeastern Sicily, the distribution pattern of earthquake-triggered landslides is inconsistent with historically known seismic activity. In particular, historical seismicity has been stronger in the eastern sector, while earthquake-triggered landsliding is much more developed in the western sector, and this contrasts with expectations. This paper describes the patterns of seismicity and landsliding, and tackles the problem of whether greater landsliding in the western sector may be due (a) to seismicity of the eastern sector or (b) to a high-magnitude, low-recurrence seismicity generated in the western sector itself. It is statistically shown that lithostructural characteristics of rock masses and geometry of hillslopes cannot justify, either singly or jointly, greater landsliding in the western sector if triggering earthquakes are generated in the eastern sector. As a consequence, it is possible that landsliding of the western sector is due to earthquakes generated locally, but having higher magnitude and longer recurrence intervals than historically observed.  相似文献   

13.
We use a combination of seismicity. tectonic features, focal mechanisms, seismic strain and postseismic movement to study the western part of North Algeria, the El Asnam region and its surrounding area in particular. A seismotectonic map of this part of Algeria, delimited by the Mediterranean Sea in the north and the Tellian mountains in the south, was built from available geological and seismological data. An examination of this map shows that the most significant earthquakes are concentrated along tectonic features and quaternary basins elongated in an east-west direction, suggesting NNW-SSE compressional movements. During the large El Asnam earthquake of 1980 October 10, M w= 7.1, vertical movement was measured along a 40 km northeast-southwest thrust fault. These movements were determined geodetically in 1981 with reference to a basic network previously measured in 1976. In order to control postseismic movement and to ensure the monitoring of the seismic area, a dense geodetic network has been regularly measured since 1986, both in planemetry and altimetry. The results of the altimetric remeasurements show significant vertical movements. The elevation changes of the benchmarks have been deduced from precise levelling measurements: a remarkable uplift (5.1 ± 1.9 mm yr−1) of the northwestern block, during the 1986-91 period has been observed, whereas the southeastern block is seen to be relatively stable. The Sar El Marouf anticline, situated along the central segment of the El Asnam surface breaks, appears to be growing with a maximum postseismic slip rate of (9.6 ± 1.4 mm yr−1). The mean uplift rates computed for the northwestern block support the view that the 1954 earthquake did not occur on the same reverse fault as the 1980 event.  相似文献   

14.
Kinematics and dynamics of the southeastern margin of the Tibetan Plateau   总被引:4,自引:0,他引:4  
On the southeastern margin of the Tibetan Plateau lies a large region which seismicity and GPS data show to be actively deforming. This paper describes the active faulting in the region, and how it relates to the velocity field observed with GPS. In places the velocity field is accommodated by rotations about vertical axes, and most or all of the strain at the surface in the region appears to be released seismically. GPS velocities are then compared to velocities calculated using a model for deformation driven by gravitational driving forces. Using rheologies estimated from experimentally derived mineral flow laws, the model provides velocities that are in good agreement with observed GPS velocities. It is not possible to uniquely determine the rheology or flow velocity at depth, and there are two forms of model solution which match the observed horizontal surface velocities. In one of these, vertical planes deform by pure shear, and in the other vertical gradients of horizontal velocity are present within the crust. Two distinct regions of normal-faulting earthquakes are present in the region, and have mechanisms which are most easily explained by gravity-driven deformation.  相似文献   

15.
DataprocessingandanalysisofcrustaldeormationmonitoringintheFildesregion,WestAntarcticaTX@陈春明@鄂栋臣@邱卫宁Dataprocesingandanalysisofcru...  相似文献   

16.
Summary. A seismic study of the Lesser Antilles arc has been carried out, first for the period 1950–1978, for which we can use local seismic networks to draw maps of instrumental seismicity, then for the period 1530–1950, for which we have catalogues of felt earthquakes. The striking feature of the spatial distribution of foci is the cluster of epicentres in the northern half of the arc; all large earthquakes ( M > 7.5) are located north of 14° latitude. Seismicity cross-sections through the arc show a variable dipping subduction zone along the arc; the deep seismic zone is steeper in the centre of the arc than on the extremity.
The time-space diagram for historical seismicity, and the evidence of a seismic gap at the east of Guadeloupe lead us to consider the northern half arc as a likely site for a large earthquake in the near future.
The seismic slip rate calculated from all major earthquakes since 1530 is of much greater value than that obtained from recent plate tectonic models, suggesting that the recurrence rate of earthquakes is more than many hundreds of years with a possible aseismic creep.  相似文献   

17.
Microseismicity and faulting geometry in the Gulf of Corinth (Greece)   总被引:7,自引:0,他引:7  
During the summer of 1993, a network of seismological stations was installed over a period of 7 weeks around the eastern Gulf of Corinth where a sequence of strong earthquakes occurred during 1981. Seismicity lies between the Alepohori fault dipping north and the Kaparelli fault dipping south and is related to both of these antithetic faults. Focal mechanisms show normal faulting with the active fault plane dipping at about 45° for both faults. The aftershocks of the 1981 earthquake sequence recorded by King et al . (1985 ) were processed again and show similar results. In contrast, the observations collected near the western end of the Gulf of Corinth during an experiment conducted in 1991 ( Rigo et al . 1996 ), and during the aftershock studies of the 1992 Galaxidi and the 1995 Aigion earthquakes ( Hatzfeld et al . 1996 ; Bernard et al . 1997 ) show seismicity dipping at a very low angle (about 15°) northwards and normal faulting mechanisms with the active fault plane dipping northwards at about 30°. We suggest that the 8–12 km deep seismicity in the west is probably related to the seismic–aseismic transition and not to a possible almost horizontal active fault dipping north as previously proposed. The difference in the seismicity and focal mechanisms between east and west of the Gulf could be related to the difference in the recent extension rate between the western Gulf of Corinth and the eastern Gulf of Corinth, which rotated the faults dipping originally at 45° (as in the east of the Gulf) to 30° (as in the west of the Gulf).  相似文献   

18.
为了研究南极现代地壳运动,中国在西南极菲尔德斯海峡地区布设了形变监测网,并用DI-20测距仪和GPS定位仪对该网进行了监测。同时,中国也参加了SCAR组织的全南极GPS联测。本文讨论了将形变参数纳入误差方程的水平形变数据处理方法,并对刚体平移、旋转、均匀应变几种典型形变模型在测边网平差中的运用进行了讨论。通过对经典自由网与秩亏自由网的基准分析,提出对形变参数以及其它附加参数和点位参数分别给定参考基准的方法。相应于上述方法,编制了一系列数据处理程序并将之应用于对西南极菲尔德斯海峡形变监测网的数据分析。本文还利用监测网应变分析原理,对GPS监测数据进行了讨论和分析,结果表明,菲尔德斯断裂地区存在微小的断裂剪切运动,但位移量不大。  相似文献   

19.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

20.
Structural development of Neogene basins in western Greece   总被引:3,自引:0,他引:3  
Abstract An account is given of the structural setting of the various Neogene sedimentary basins of western Greece. Compressional basins are attributable to foreland loading by the Alpine fold and thrust belt of the Outer Hellenides, and to active subduction in the adjacent western Hellenic arc. Late extensional basins are related to N-S crustal extension in the Aegean marginal basin and, in western Greece, are superimposed on the earlier compressional structures. The local seismicity provides evidence that the main E-W-trending basin-bounding faults of the extensional basins form a linked system that includes NW-SE- and NE-SW-trending transfer zones of transtension. The transfer zones are themselves the sites of small extensional basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号