首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

The propagation of Alfvén waves along a uniform horizontal field in a highly conducting incompressible fluid, subject to the convective forces produced by a uniform vertical temperature gradient, is treated in a Boussinesq approximation. It is shown that there are exact solutions with large amplitude but restricted form. Their restricted form means that an arbitrary disturbing force produces other motions as well as Alfvén waves. An arbitrary initial disturbance of small amplitude produces waves whose state of polarization varies along the direction of propagation. For large amplitudes, however, any mixtures of polarization states causes scattering into new modes.  相似文献   

2.
Abstract

We study the nonlinear stability of MHD waves propagating in a two-dimensional, compressible, highly magnetized, viscous plasma. These waves are driven by a weak, shear body force which could be imposed by large scale internal fluctuations present in the solar atmosphere.

The effects of anisotropic viscosity (leading to a cubic damping) and of the nonlinear coupling of the Alfven and the magnetoacoustic waves are analysed using Galerkin and multiple-scale analysis: the MHD equations are reduced to a set of nonlinear ordinary differential equations which is then suitably truncated to give a model dynamical system, representing the interaction of two complex Galerkin modes.

For propagation oblique to the background magnetic field, analytical integration shows that the low-wavenumber mode is physically unstable. For propagation parallel to the background magnetic field the high-wavenumber wave can undergo saddlenode bifurcations, in way that is similar to the van der Pol oscillator; these bifurcations lead to the appearance of a hysteresis cycle.

A numerical integration of the dynamical system shows that a sequence of Hopf bifurcations takes place as the Reynolds number is increased, up to the onset of nonperiodic behaviour. It also shows that energy can be transferred from the low- wavenumber to the high-wavenumber mode.  相似文献   

3.
Abstract

In the present paper the behavior of (internal) magneto-acoustic-gravity waves near the cusp resonance in a lossless, compressible, isothermal, stratified, electrically conducting atmosphere that is permeated by a uniform, nearly horizontal magnetic field is re-addressed (Kamp, 1989). The previously analyzed linear conversion of long acoustic-gravity waves into short magneto-acoustic waves that carry off the energy from the resonance region along the magnetic field, is re-analyzed with boundary layer techniques that are based on the smallness of the vertical component of the magnetic field. More specifically the existence of the so-called valve effect for the generated magneto-acoustic mode near the critical level is explicitly demonstrated and shown to be governed by two rivalling effects.  相似文献   

4.

Thermal instabilities in the form of oscillatory magnetoconvection representing diffusively modified Alfvén waves in an electrically-conducting Bénard fluid layer of rigid walls in the presence of a vertical magnetic field are investigated. Emphasis of the article is on the transition from a nearly undamped Alfvén wave to diffusively modified Alfvén waves, and on the effect of physically realisable magnetic field boundary conditions on magnetoconvection. It is found that the extra magnetic dissipation in the magnetic Hartmann boundary layers can enhance oscillatory magnetoconvection in the form of strongly modified Alfvén waves. Oscillatory magnetoconvection produced solely by the Alfvén wave mechanism can be the most unstable mode even in the presence of a strong viscous effect. This article also represents the first study on the effect of an electrically conducting wall on magnetoconvection which is associated with a nonlinear eigenvalue problem. We find that the electrically perfectly conducting condition does not yield a good approximation for magnetoconvection with an electrically highly conducting wall. The size of oscillation frequency with an electrically highly conducting wall can be more than a factor of 2 larger than that obtained using the perfectly conducting condition.  相似文献   

5.
Abstract

The paper consists of two parts. The first introduces the dynamo equation into a rotating gaseous disk of finite thickness and then searches for its solution for the generation and maintenance of large-scale bisymmetric spiral (BSS) magnetic fields. We determine numerically the dynamo strength and vertical thickness of the gaseous disk which are necessary for the BSS magnetic fields to rotate as a wave over large area of the disk.

Next we present linearized equations of motion for the self-gravitating disk gas under the Lorentz force due to the BSS magnetic fields. Since the angular velocity of the BSS field is very close to that of the spiral density wave, a nearly-resonant interaction is caused between these two waves to produce large-amplitude condensation of gas in a double-spiral way. The BSS magnetic field is considered as a promising agency to trigger and maintain the spiral density wave.  相似文献   

6.
Abstract

A general linearized wave equation for a stratified rotating fluid is derived and applied to obtain a dispersion relation for waves of short latitudinal extent in a thin shell of fluid. Long period wave solutions in three ocean models are compared: (1) for a stratified ocean with both components of the rotation vector; (2) for a stratified ocean without the horizontal component of rotation, and finally, (3) for a homogeneous ocean without horizontal rotation. The inclusion of the horizontal component of the Earth's rotation is found to have no noticeable effect on the dispersion relation of long period waves; its only influence is the introduction of a vertical phase shift in the motions. The origin of this phase shift is found in the tendency of the motions to satisfy the Taylor-Proudman theorem. The phase shift is of possible oceanographic relevance only for bottom-trapped buoyancy waves in a relatively weak stratification. The differences between the three ocean models are also discussed with the help of graphs of the numerically integrated dispersion relations. The relative influences of shell thinness and stratification in inhibiting the influence of the horizontal component of the earth's rotation are also briefly discussed.  相似文献   

7.
Summary An attempt was made to apply the Schlieren method for the investigation of kinematic and dynamic parameters of surface waves. The wave field generated by an exploding wire was studied in two-dimesional plexiglas models of a half space. Travel-time curves of the observed wave groups are given. Densitograms of surface waves obtained by microphotometric profiling parallel or perpendicular to the direction of the wave propagation enable to estimate the horizontal or vertical components of compressional stresses forming these waves.  相似文献   

8.
Abstract

The term ‘‘solitary wave'’ is usually used to denote a steadily propagating permanent form solution of a nonlinear wave equation, with the permanency arising from a balance between steepening and dispersive tendencies. It is known that large-scale thermal anomalies in the ocean are subject to a steepening mechanism driven by the beta effect, while at the smaller deformation scale, such phenomena are highly dispersive. It is shown here that the evolution of a physical system subject to both effects is governed by the ‘‘frontal semi-geostrophic equation'’ (FSGE), which is valid for large amplitude thermocline disturbances. Solitary wave solutions of the FSGE (here named planetons) are calculated and their properties are described with a view towards examining the behavior of finite amplitude solitary waves. In contrast, most known solitary wave solutions belong to weakly nonlinear wave equations (e.g., the Korteweg—deVries (KdV) equation).

The FSGE is shown to reduce to the KdV equation at small amplitudes. Classical sech2 solitons thus represent a limiting class of solutions to the FSGE. The primary new effect on planetons at finite amplitudes is nonlinear dispersion. It is argued that due to this effect the propagation rates of finite amplitude planetons differ significantly from the ‘‘weak planeton'', or KdV, dispersion relation. Planeton structure is found to be simple and reminiscent of KdV solitons. Numerical evidence is presented which suggests that collisions between finite amplitude solitary waves are weakly inelastic, indicating the loss of true soliton behavior of the FSGE at moderate amplitudes. Lastly, the sensitivity of solitary waves to the existence of a nontrivial far field is demonstrated and the role of this analysis in the interpretation of lab experiments and the evolution of the thermocline is discussed.  相似文献   

9.
Abstract

Calculations are presented for the evolution of a magnetic field which is subject to the effect of three-dimensional motions in a convecting layer of highly conducting fluid with hexagonal symmetry. The back reaction of the field on the motions via the Lorentz force is neglected. We consider cases where the imposed field is either vertical or horizontal. In the former case, flux accumulates at cell centres, with subsidiary concentrations at the vertices of the pattern. In the latter, topological asymmetries between up- and down-moving fluid regions generate positive flux at the base of the layer and negative flux at the top, though the system is actually an amplifier rather than a self-excited dynamo. Spiral field lines form in the interiors of the cells, and the phenomenon of “flux expulsion” found in two-dimensional solutions is somewhat altered when the imposed field is horizontal. Applications for stellar magnetic fields include a possible mechanism for burying flux at the base of a convection zone.  相似文献   

10.
Abstract

We deduce the dissipative Alfvén wave equation in a medium stratified in one direction, with a transverse magnetic field, in the presence of dissipation by fluid viscosity and electrical resistance; the dissipative Alfvén wave equation generalizes earlier results for homogeneous (Cowling, 1960) and inhomogeneous (Campos, 1983a) media, and corrects an error in the literature (Heyvaerts and Priest, 1983). The wave equation is solved exactly in two cases: a uniform magnetic field, and a magnetic field decreasing with height. In both cases the mean state is assumed to be isothermal, with a constant rate of ionization, so that the magnetic diffusivity is constant, but the dynamic viscosity increases with height. There are therefore two regions, a low- (high-) altitude region where electrical resistance dominates fluid viscosity (or vice versa), and an asymptotic regime relevant to the uppermost (lowermost) layers. The two regions are separated by a transition layer, across which the wave field is continuous and whose structure is expressible by hypergeometric functions, with different arguments in the low- and high-altitude regions, and over the whole altitude range. These exact solutions allow the amplitude and phase of the wave field to be plotted as a function of height for a variety of magnetoatmospheric mean states. They show that wave dissipation is more localized and intense when the magnetic field decreases with height than when it is uniform.  相似文献   

11.
Abstract

Cowling investigated the effect of an imposed magnetic field on convection in order to explain the origin of sunspots. After summarizing the classical linear theory of Boussinesq magnetoconvection, this review proceeds to more recent nonlinear results. Weakly nonlinear theory is used to establish the relevant bifurcation structure, which involves steady, oscillatory and chaotic solutions. Behaviour found in numerical experiments can then be related to these analytical results. Thereafter, attention is focused on the astrophysically relevant problem of fully compressible magnetoconvection. Steady two-dimensional nonlinear solutions show two important effects: stratification introduces an asymmetry between rising and falling fluid, while compressibility leads to evacuated magnetic flux sheets. Time-dependent behaviour includes transitions between standing waves and travelling waves, as well as changes in horizontal scale, leading to the development of more complicated spatial structures. Work on three-dimensional models, which is now in progress, will lead to a better understanding of the structure of a sunspot.  相似文献   

12.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

13.
Abstract

The ray method is used to study slow hydromagnetic waves in an incompressible, inviscid, perfectly conducting fluid of constant density in the presence of a constant toroidal magnetic field. The fluid is bounded below by a rigid sphere and above by a rigid spheroidal surface, and the mean fluid layer thickness is assumed to be small. Both the general time-dependent and time-harmonic (free oscillation) problems are studied and dispersion relations and conservation laws are derived. These results are applied to free oscillations with constant azimuthal wave number in a spherical shell and then compared to those of previous authors. Such oscillations propagate to the east and are trapped between circles of constant latitude. Wave propagation in axisymmetric shells is then studied with emphasis on the relationship between shell shape and direction of propagation, and it is found that such shells can sustain westward propagating modes wherever the shell thickness decreases sufficiently rapidly from a maximum at the poles to zero at the equator; no shells exist which can sustain westward propagation at the equator.  相似文献   

14.
Abstract

Some conflicting evidence on Reynolds' (1900) hypothesis that rain should attenuate any wave motion on the sea surface is discussed. It is concluded that rain drops ought to produce vortex rings in the sea which mix the water to a sufficient depth to affect most waves, as asserted by Reynolds. By introducing vertical and horizontal eddy viscosities to model the mixing process, an estimate is found for the rate of attenuation of wave energy by the rain. Consequently, the net effect on the wave field of attenuation by rain and generation by wind is calculated.  相似文献   

15.
Summary The effects of a uniform external magnetic field on the propagation of waves in a homogeneous, infinitely conducting flat plate with free boundaries have been studied. It has been found that in general all the three types of waves —P, SV andSH waves—are coupled and the influence may be more pronounced in coupling the symmetric and antisymmetric types of motions in every mode.When the magnetic field is parallel to the plane faces and transverse to the direction of wave propagation, the shear wave polarized parallel to the field is purely elastic whereas the coupledP andS V waves are magnetoelastic and exhibit dispersion strikingly similar to the non-magnetic case, provided the electro-magnetic radiation into the surrounding free space is neglected.The results reported in an earlier communication [1]2) are also confirmed.  相似文献   

16.

A ray theory is applied to the problem of three‐dimensional propagation of inertial‐internal waves in the presence of a mean baroclinic current which does not vary in the downstream coordinate. As time increases, the Doppler‐shifted wave frequency, or intrinsic frequency, tends to a limiting value determined by the horizontal and vertical variations of the mean current and density fields. The limiting value of the intrinsic frequency determines critical surfaces where energy is transferred to the mean motion. Also, the group velocity tends to the mean current velocity, and the phase velocity tends to be oriented towards or away from the core of the mean current, depending upon whether the wave is either initially propagating with a wave number component antiparallel or parallel to the mean current.  相似文献   

17.
Abstract

The possible interaction of trapped midoceanic boundary waves with a nearby coastline is examined by considering a step trench-ridge topography adjoining a semi-infinite straight coastline. The full dispersion equation, including the effect of the earth's rotation, is derived for long waves over this topography. It is shown that the presence of the coastline begins to have a significant effect on the behaviour of quasigeostrophic ridge waves whenever the wave length is greater than three times the ridge coastline separation.

As an example, the dispersion curves are presented for the topography of the Heceta Bank off the coast of Oregon and it is conjectured that the presence of this off-shore ridge may provide an explanation for the anomalous direction of propagation of the 0.1 c.p.d. shelf wave reported by Mooers and Smith (1968).  相似文献   

18.
Abstract

The problem of unsteady long waves generated by any horizontal and symmetrically distributed, time-periodic surface wind on a rotating ocean is analysed for large times and distances. Uniform asymptotic estimates of the surface displacement in the unsteady state are obtained. The steady-state wave and velocity fields at any distance are also determined. Some characteristics of the unsteady and steady motions are described. Also noted are the features that distinguish the motion from its one-dimensional analogue for which a non-uniform analysis in the unsteady state along with a large-distance form of the surface elevation are already known.  相似文献   

19.
Abstract

In a nonrotating system, the shear Reynolds stresses exerted by surface or internal gravity waves vanish on account of the exact quadrature between the horizontal and vertical orbital velocities. It is shown that a rotation of the system induces small in‐phase perturbations, resulting in a mean Reynolds stress which can generate low frequency currents. If both the wave field and the ocean are homogeneous with respect to the horizontal coordinates, the low‐frequency response is an undamped inertial oscillation. If either the wave field or the ocean are weakly inhomogeneous, the oscillation disperses in the vertical and horizontal directions due to phase‐mixing of modes with closely neighboring frequencies. Other effects which produce small frequency shifts also contribute to phase‐mixing, for example the horizontal component of the Coriolis vector and nonlinear interactions with geo‐strophic currents. The analysis is based on operator representations which avoid normal mode decomposition and yield simple integro‐differential operators for each phase‐mixing process. Numerical results are presented for a continuously stratified model typical for a shallow sea (Baltic). The orders of magnitude and qualitative features are in reasonable agreement with observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号