首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
青藏高原地球物理与大陆动力学研究的新进展   总被引:2,自引:0,他引:2       下载免费PDF全文
岩石圈地球物理探测、深部结构成像与各向异性等研究是青藏高原大陆动力学研究的基础.近年来,随着深部地球物理探测技术和反演成像技术的进步,信息提取与细节分辨能力不断提升,青藏高原壳幔结构、碰撞和隆升动力学、资源与地质灾害的深部机制等研究进展显著.本专辑收录33篇论文,主要分布在深部结构与地球物理探测、地震各向异性与变形、断裂性质与地震活动等三个主要研究领域.本文重点围绕这些论文,对近年来青藏高原地球物理研究进展进行综述.  相似文献   

2.
青藏高原北缘新生代幔源岩浆活动及构造运动性质   总被引:11,自引:1,他引:11  
北方板块是否俯冲到了青藏高原之下?现有的资料尚难对此作出确切的回答. 解决问题的关键之一是青藏高原北缘的新生代岩浆起源与作用过程. 支持俯冲模型的地球物理论据及岩浆活动证据都还不够充分. 然而, 许多证据却表明, 陆-陆碰撞引起的大型剪切断裂和地壳大规模缩短在青藏高原北缘的岩石圈运动中有重要的作用. 青藏高原北缘的幔源岩浆活动局限在大型走滑断裂的交汇部位, 岩浆成因可能与走滑作用导致的局部拉张环境有关. 走滑断裂导致岩石圈的重力不稳定性和垮塌, 深部热物质上升, 它们所携带的热量与剪切作用生成的热一起, 导致含水地幔发生部分熔融.  相似文献   

3.
青藏高原-天山大陆内部地壳变形三维数值模拟研究   总被引:1,自引:0,他引:1  
大量研究事实证明,板块相互作用除了在板块边缘产生地壳强烈变形外,其应变可以扩展到远离板块边界的大陆内部,对板块相互作用的远程效应以及大陆内部地壳变形的动力学机制目前仍然有争议.本文结合前人对大陆岩石圈流变学研究的知识和现代GPS观测结果,应用三维有限元数值模拟技术探讨了印度大陆向北推挤与青藏高原-天山地壳变形的动力学关系.模拟地壳的流变学用Maxwell黏弹性模型近似,印-藏的汇聚速度用大量GPS观测的速度边界约束,而欧亚大陆内的远程边界用弹簧约束.在重力方向上,模型考虑了重力加载和位于深部的静岩压力边界.通过大量模型的计算,在均一的地壳流变学框架下印-藏汇聚的应变使研究区内发生整体隆升;然而当考虑青藏高原,塔里木地块和天山等区域中地壳流变学可能存在的横向不一致时,可以发现印藏汇聚的应变经青藏高原吸收后可以跃过塔里木导致天山地区的强烈变形.这暗示新生代以来发生在天山地区强烈地壳变形的动力学可能与印-藏汇聚过程中青藏高原-塔里木天山一带岩石圈流变学存在横向不均一有关.这对我们进一步认识板块相互作用的远程效应和大陆内部岩石圈变形机制有一定理论意义  相似文献   

4.
青藏高原下方存在着世界上最大规模的陆陆碰撞,在这种碰撞过程中,青藏高原岩石圈发生了强烈变形,缩短量约750~1500 km,同时垂直方向平均隆升了约4500 m.  相似文献   

5.
印度板块与欧亚板块的碰撞是新生代全球最重要的地质事件,由此青藏高原快速隆升,成为了世界第三极,并不断向外扩展,其内部大型断裂体系发育、地质构造复杂、地震及火山活动性强烈。青藏高原东部及其周边地区作为研究高原隆升、深部变形的动力学机制的天然试验场,也是国际地学领域、地球物理与大陆动力学领域的一个重要焦点。本文根据第八届青藏高原东部构造与地球物理研讨会(WTGTP2020)的学术报告,对高原深部结构与动力学研究的一些新进展进行阐述。本次研讨会对青藏高原及其周边地区岩石圈结构、变形机制及物质运移动力学模式等关键问题进行了较为系统的讨论,围绕青藏高原的形成演化历史,从深部构造与岩浆变质响应,到浅部地表过程以及其对资源气候的影响进行探讨研究,将地球深部动力学、地表过程和气候变化等不同圈层的相互作用有机地联系在一起。   相似文献   

6.
青藏高原东北部岩石圈有效弹性厚度及其各向异性   总被引:5,自引:4,他引:1       下载免费PDF全文
青藏高原东北部是中国大陆构造环境特殊的主要构造域,毗邻青藏高原羌塘地块、塔里木盆地、四川盆地和华北克拉通,属于不同构造类型块体俯冲、碰撞及陆内汇聚的结合部,在中国大陆形成与演化的历史中扮演着重要角色.岩石圈有效弹性厚度(Te)及其各向异性与岩石圈流变性、力学结构紧密相连,研究青藏高原东北部的岩石圈Te及其各向异性将为我们认识大陆岩石圈的流变性及动力学过程提供重要信息.本文基于Fan小波相关性分析法,运用布格重力和地形资料获得了青藏高原东北部岩石圈Te及其各向异性二维分布的详细信息.研究结果表明研究区域内Te的分布范围在5~100 km之间;松潘-甘孜地块、祁连山造山带和龙门山地区的Te较薄(5 kme<40 km)、各向异性较强;而周缘的断裂带、缝合带的Te值都较低,其中龙门山断裂带Te只有5~20 km,且南、北两段各向异性存在明显差异.内部的若尔盖盆地Te值略显高值,说明其是仍保留有刚性的块体;北缘的柴达木盆地下伏为古生代的地壳,被认为是古老的克拉通碎片,Te较大(50 kme<90 km),显示为轮廓分明的刚性块体.并且我们发现研究区域内Te的各向异性轴垂直于大的块体边界.通过比较Te各向异性与SKS波的快波偏振方向、Rayleigh面波方位角各向异性的相互关系我们推测阿拉善地块各向异性源自地幔橄榄岩晶格的优势取向,岩石圈变形趋于垂直连贯变形模式;柴达木盆地各向异性源于历史构造事件残留在岩石圈中的"化石"各向异性;松潘-甘孜地块各向异性源自物质的侧向流动.  相似文献   

7.
新生代以来,印度板块和欧亚板块发生碰撞形成了喜马拉雅造山带和青藏高原,印度板片在喜马拉雅东构造结处缅甸弧俯冲带进入深部地幔.开展缅甸弧俯冲带下方地幔间断面的研究有助于认识印度大陆岩石圈的碰撞-俯冲过程及其对上地幔结构的影响.本文选用了发生于缅甸弧地区的3个中源地震事件,获取了欧洲和美国阿拉斯加地区多个密集地震台网/台阵...  相似文献   

8.
若尔盖与西秦岭地震反射岩石圈结构和盆山耦合   总被引:10,自引:0,他引:10       下载免费PDF全文
松潘地块北缘的若尔盖盆地与西秦岭造山带相接触,构成青藏高原东北缘典型的新生代盆山构造.其岩石圈结构与深部构造关系,记录了青藏高原东北缘板块碰撞的深部过程,同时又关联着若尔盖盆地油气远景的评价.2004年秋冬季,我们完成了第一条跨越若尔盖盆地和西秦岭造山带的深地震反射剖面.整个剖面全长254 km,分5段完成,其中第2段剖面(简称SP04_2)横过盆山结合部位.SP04_2剖面首次揭示若尔盖盆地-西秦岭造山带盆山结合部位的岩石圈结构,发现了若尔盖盆地和西秦岭造山带下地壳均以北倾为主的强反射特征,提供出若尔盖盆地下地壳整体向西秦岭造山带俯冲的地震学证据,揭示了若尔盖盆地和西秦岭造山带在挤压构造体系下形成的深部构造关系.而近于平的Moho反射特征又反映出两者在造山后期经历了强烈的伸展作用.  相似文献   

9.
青藏高原深部地球物理探测70年   总被引:1,自引:0,他引:1  
青藏高原是全球海拔最高、规模最大、时代最新的陆-陆碰撞造山带.几十个百万年以来高原隆升、喜马拉雅山系崛起是地球演化史上最为壮观的构造事件之一.青藏高原壳幔结构和深部过程备受国内外地球科学家关注.近七十年来的地球物理研究与探索表明:(1)青藏高原地壳巨厚,岩石圈较薄;(2)壳内存在软弱层,但厚度和联通性有限;(3)高原下地壳及Moho面广泛发育叠瓦状反射特征,存在明显的脆性变形;(4)喜马拉雅和拉萨块体南部存在双Moho现象/迹象;(5)印度大陆岩石圈向高原下方俯冲的形态存在显著的东西向差异;(6)高原主体上地幔各向异性以NEE向为主;(7)青藏高原布格重力异常四周高、中间低,异常场边界与地形梯度变化密切相关;(8)高原内部磁异常较弱,周边地区较强,其分界与区域构造边界基本一致;(9)青藏高原水热活动强烈,大地热流值高,主要来自加厚地壳的贡献.但是,有关青藏高原深部过程,诸如是否存在中/下地壳流、印度与欧亚大陆岩石圈的俯冲模式等重大科学问题目前仍存在争议.青藏高原地球物理和动力学研究是一个复杂的系统工程,以科学问题为导向,结合国家重大需求,在关键区域组织实施综合地球物理探测,可望在地学领域取得创新与突破.  相似文献   

10.
文章对近十多年来国外关于在印度-欧亚大陆碰撞过程中岩石圈的变形和造山运动的研究工作进行了简要的回顾和总结。粘性薄片模型在某些方面比较成功地代表了岩石圈在大陆碰撞和造山运动中的变形过程及其后果的主要特征,但也存在一些不足之处。  相似文献   

11.
青藏高原深部构造与动力学机制一直是深部地球物理与大陆动力学的重点研究领域.青藏高原东部地形起伏剧烈,地震活动频繁,金属与油气矿床丰富,揭示出青藏高原东部极为复杂的壳幔结构与深部变形及非常强烈的深部物质运动.近年来,随着地球物理综合观测技术、深部结构成像方法、地球动力学模拟等研究的快速发展,围绕青藏高原东部的深部构造、块体运动、深部动力模式、强震活动与深部蕴震机制及成矿深部构造等方面进展显著.青藏高原东部构造与地球物理研讨会(WTGTP)是围绕青藏高原东部深部结构与动力学机制、资源开发、地质灾害等相关地球科学问题按年度召开的学术交流研讨会.本文基于2021年和2022年召开的第九届和第十届WTGTP的会议报告,结合近年来的相关研究成果,围绕印度—欧亚板块碰撞、构造变形特征与动力学机制以及强震活动与深部蕴震机制等主要内容,介绍了青藏高原东部的地球物理结构及深部构造变形与动力学机制的研究进展.初步展望了青藏高原深部构造与地球物理研究前景,期望能给相关科研人员提供一点有益的参考.  相似文献   

12.
正新生代印度大陆和欧亚大陆的碰撞引起了青藏高原强烈的变形和隆升,青藏高原东南缘作为在板块碰撞作用下高原物质向东南扩展的重要场所,其结构和动力学过程对于了解青藏高原的构造演化至关重要。地震波各向异性是了解地球内部物质变形方式的重要手段,近年来在青藏高原东南缘开展了大量的地震波各向异性测量,包括Pms震相、SKS震相等,并针对相应的地球物理测量结果提出了构造模型,但这些构造模型缺乏来自深部岩石学方面的约束来确定地球物理测量结果解释的合理性和可靠性。已有研究表明地震波各向异性主要受岩石  相似文献   

13.
沈旭章 《地球物理学报》2013,56(6):1895-1903
地壳和岩石圈变形特征研究对于深入了解中强地震的深部孕震环境具有重要科学意义.本文联合P和S波远震接收函数偏移成像结果,对发生过芦山7.0地震和汶川8.0地震的龙门山断裂带及附近区域地壳和岩石圈结构进行分析.结果揭示出在青藏高原向四川盆地过渡的龙门山断裂带,Moho面和岩石圈底界面(LAB)呈现出强烈变形,特别是芦山地震和汶川地震震源区下方地壳出现了错断、下凹,岩石圈也呈现下凹变形特征.这种地壳及岩石圈变形所代表的高应力的积累可能是汶川和芦山地震发生的重要深部地球动力学背景.  相似文献   

14.
大陆岩石圈的增厚及对流剥离对青藏高原隆升的影响   总被引:10,自引:1,他引:9  
伴随着印度板块对欧亚板块南缘的碰撞,挤压,青藏高原地壳及下伏地幔岩石圈的厚度增加了1倍。增厚岩石圈热结构的变化可导致高原海拔下降约1500m。其对流剥离并被较热的软流圈物质替代可用以解释青藏高原自8百万年或3百万年前开始的快速隆升。大陆岩石圈的增厚及热结构变化和对流剥离可能是青藏高原自9百万年前开始的夷平-快速隆升过程的主导控制因素。  相似文献   

15.
青藏高原东南缘处于印度板块与欧亚板块碰撞的侧翼,揭示该地区的岩石圈结构有助于完整理解青藏高原碰撞造山的动力学过程,对构建大陆碰撞成矿理论框架至为关键.本研究对横过青藏高原侧向碰撞带的一条深反射地震剖面的15个大炮资料,进行了针对性静校正、去噪等处理和单次叠加成像,结果剖面显示了侧向碰撞带岩石圈结构的骨架特征:(1)双程走时(TWT)8~10s的强反射(Tc)将地壳分为上、下两层;Tc可能是大型滑脱构造的拆离面,其存在使上地壳的变形与下地壳解耦;(2)Moho间断面反射(Tm)为3~4个同相轴的窄带反射波组,横向不连续,与深大断裂交汇处被错断,但断距不大;(3)在兰坪—思茅地块下方TWT21s和扬子克拉通西缘下方TWT22~24s存在相向倾斜的反射波组(TL);以Tc、Tm和TL构成的骨架结构,定性地描绘出剖面下方岩石圈地幔以汇聚为主、地壳块体以侧向滑移为主和上地壳为薄皮逆冲或滑脱的分层动力学模式.该岩石圈变形样式明显不同于以正向碰撞挤压、地壳缩短垂向增厚为主的"冈底斯模式".  相似文献   

16.
约50Ma前印度板块与欧亚板块开始碰撞之后,青藏高原发生了令人瞩目的整体隆升,成为晚第三纪以来亚洲乃至全球最为重要的地质事件,并使青藏高原成为大陆岩石圈变形最为强烈的地区之一,是全球学者研究大陆动力学乃至地球动力学的焦点和热点地区。由于印度板块与欧亚板块的碰撞以及组成青藏高原各地块向东和东南的挤出运动,位于青藏高原东边缘大凉山地块及其附近地区具有明显的高原和盆地之间的过渡带特征,地壳变形严重,地壳厚度变化剧烈,并且是重力梯度带和航磁异常明显的地区,也是(GPS)资料显示的地壳运动方向由东向东南发生转变的关键地段。本区不仅蕴藏有丰富的金属矿等矿产资源,也是我国强烈地震最为频繁的地区之一。  相似文献   

17.
青藏高原岩石圈不均一性及其动力学意义   总被引:10,自引:0,他引:10  
首先论述现今高原岩石圈结构的不均一性现象, 然后通过事件性质及其序列的讨论, 推演印度-亚洲碰撞后造山过程的P-T-t轨迹及其深部过程, 由此提出青藏高原岩石圈三阶段演化的构造相模型: (1) 早期相:帕米尔型岩石圈冷根; (2) 中期相: 念青唐古拉型减薄岩石圈; (3) 晚期相: 羌塘型“热”岩石圈(由软流圈冷却而来). 最后, 讨论了羌塘地区岩石圈是厚、还是薄?  相似文献   

18.
青藏高原是全球最大和最高的高原,它在所有大陆中不仅具有无与伦比的独特构造,而且它还是现今唯一仍在继续进行着的大陆碰撞的产物,因此,揭示青藏高原的深部构造对于研究大陆演化及地球动力学问题均有十分重要的意义.由于青藏高原复杂的地理环境等原因,青藏高原内部的地球物理观测资料非常缺乏,许多学者只能通过少数布设在内部及其周围的固定地震台站来研究高原的深部构造.这大大影响了其研究结果的可靠程度.   相似文献   

19.
地球上的造山带可以划分为增生型造山带和碰撞型造山带,造山带岩浆作用发生在从大洋俯冲、大陆碰撞到造山带垮塌的每一个阶段.陆-陆碰撞的必要条件是大陆俯冲带的存在.一般假设,大陆岩石圈深俯冲的前提是大洋岩石圈俯冲及其在陆-陆碰撞时对紧随被动大陆边缘岩石圈的重力拖曳.大陆俯冲和碰撞的结果是地壳加厚和隆升,但是所产生的造山带岩浆作用发生在什么时间则取决于岩石圈加热机制.增生型造山带没有发生大陆之间强烈碰撞和深俯冲,一般缺少大规模的地壳叠置加厚和隆升,缺少与大陆深俯冲有关的超高压榴辉岩相变质岩,虽然大洋俯冲阶段可以形成巨厚的陆弧地壳,但同碰撞和碰撞后岩浆作用是否存在值得怀疑.碰撞型造山带由于大陆深俯冲和地壳强烈加厚,超高压变质的洋壳和大陆地壳在折返过程中减压熔融,形成同碰撞岩浆作用,在造山旋回晚期去根和垮塌过程中,由于岩石圈伸展和软流圈地幔上涌,形成碰撞后岩浆作用,并标志造山旋回的结束.因此,碰撞造山带的岩浆作用可以发生在大陆深俯冲的同时、俯冲洋壳与陆壳断离后的折返和隆升、造山带的去根和垮塌过程,从大陆碰撞到造山带垮塌和剥蚀(造山旋回结束)的时间跨度为50~90百万年.大陆碰撞造山带是深入了解大陆深俯冲、折返隆升及其造山带垮塌过程的重要场所,而碰撞造山过程中的岩浆作用对大陆地壳生长和再造有重要意义.  相似文献   

20.
<正>在印度板块推挤作用下,青藏高原深部物质发生了东向迁移。阿尔金断裂、祁连山断裂和海原断裂构成了青藏高原的北边界和东北边界。边界区域的岩石圈变形机制是研究青藏高原隆升机制和生长模式的重要边界条件。海原-六盘山断裂带可能是青藏高原物质东移的一个终点,该区域岩石圈变形机制的研究对于构建青藏高原隆升的完整模型具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号