首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
利用高分辨率(10km)数值模拟的结果,以登陆华南并引发特大暴雨的0601号台风为例,对台风中田尺度动能收支平衡进行了诊断分析。结果表明,中-β尺度系统动能收支水平项(水平通量散度项和水平产生项)很小,垂直项(垂直通量散度项和垂直产生项)是动能收支方程的主要部分;动能垂直通量散度在对流层低层是动能的汇,在对流层中高层为动能的源;动能垂直产生项在对流层各层都是动能的汇;浮力产生项在300hPa以下是动能的源,在对流层高层是动能的汇;平均动能的局地变化项,在对流层各层均小于零,暴雨期间对流层动能支大于收,且动能变化在对流层中低层最明显。就整个对流层的垂直总量而言,浮力产生项是主要的动能源,而垂直产生项是主要的动能汇。较强冷空气首先从对流层中层入侵台风环流系统,抑制动能制造和传输,是中田尺度对流系统不能维持、发展的主要原因,也是台风系统及其暴雨不能长久维持的关键。  相似文献   

2.
Dual-Doppler winds at 1647 MDT for the 14 July, 1982 convective storm collected during the Joint Airport Weather Studies (JAWS) project at Denver's Stapleton International Airport were objectively analyzed to produce a three-dimensional wind field. The domain of interest had dimensions of 10 × 10 × 8.5 km centered on the microburst. Vertical velocities were computed by integrating the anelastic continuity equation downward from the storm's top. A variational approach was then employed to adjust the derived three-dimensional wind field. Subsequently, fields of deviation perturbation pressure and virtual temperature were retrieved from a detailed wind field using the three momentum equations. These retrieved fields were subjected to internal consistency checks to determine the level of confidence before interpetation. The fields were then used to calculate the generation of the vertical transport of horizontal momentum in the subcloud layer of a microburst-producing storm during the quasi-steady mature stage. Results show that the microburst occurrence in the atmospheric boundary layer (ABL) enhances eddy transfer of momentum. Direct calculation of the vertical transport of u- and v-momentum reveals that momentum was being transferred downward from the mid-levels of the storm to the microburst. The dominant processes contributing to the generation/dissipation of horizontal momentum flux were the total buoyancy production, pressure effects, vertical mean wind shear and vertical transport of momentum. The above processes play an important role in maintaining the strength of the microburst outflow in the ABL during the quasi-steady mature stage of the microburst life cycle.  相似文献   

3.
一次高原低涡诱发西南低涡耦合加强的动力诊断分析   总被引:1,自引:0,他引:1  
利用2013年6月29日—7月2日期间逐6 h的NCEP 0. 5°×0. 5°全球预报场再分析GFS (Global Forecast System)资料,对一次引发特大暴雨的西南低涡和高原低涡耦合贯通加强过程进行动力诊断分析,结果表明:西南低涡和高原低涡耦合区上方在不同阶段均维持正涡度柱,呈现低空辐合和高空辐散的特征,并伴有强烈上升运动。垂直运动在耦合开始阶段最强,正涡度柱在耦合强盛阶段显著增强,高原低涡和西南低涡耦合贯通后,改变了涡度的垂直特征。西南低涡发展维持的涡动动能主要源于水平通量散度项和涡动动能制造项,摩擦耗散项和垂直通量散度项是其主要消耗项。高原低涡发展维持的涡动动能主要源于垂直通量散度项和区域平均动能与涡动动能之间的转换项,涡动动能制造项出现负值是其涡动动能减弱的主要原因。耦合期间强烈垂直运动将西南低涡的涡动动能向高原低涡输送,西南低涡对高原低涡发展维持有重要动力作用。  相似文献   

4.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

5.
本文用总动能、总有效位能、扰动动能和扰动有效位能四个收支方程计算了1980年4-6月南海南部(0-15°N,100-120°E)夏季风建立前(4月1日-5月9日)和夏季风建立后(5月18日-6月25日)各时段的大气能量收支,并对其结果进行了分析讨论,发现:(1)总动能主要是在制造项G(K)(汇)与耗散项D(K)(源)间达到平衡,夏季风建立后源汇强度值都增大了40%左右。(2)非绝热加热所直接制造的有效位能并不重要,高层总有效位能的水平通量辐合、中低层与总动能间的转换和由于参考气压的变化而引起总有效位能的增减对于总有效位能的收支作用较大,其作用在夏季风建立前后也明显不同。(3)扰动动能同总动能一样主要在制造项G(K)(汇)与耗散项D(K)(源)间平衡。夏季风建立后源汇强度增强。(4)扰动有效位能主要由非绝热加热制造,夏季风建立后制造量增大了16倍多。夏季风建立前,扰动有效位能主要因参考气压的改变而减少;夏季风建立后,扰动有效位能主要被转换为扰动动能和平均有效位能。   相似文献   

6.
地气通量中存贮和平流项计算方案的探讨   总被引:1,自引:0,他引:1  
从物质收支方程出发,推导了一个包含物质存贮、水平平流输送、垂直对流输送以及传统的涡度相关项的地气通量计算方程。平流项本质上是地表非均匀性的结果,不同下垫面的感热和潜热通量也不同,将会产生中尺度环流,使得辐合辐散过程得以维持,从而将体元内的物质输送到体元以外,因此可以通过计算水汽和感热的存贮,间接求出物质的水平平流输送。量纲分析和实际的资料应用都表明,存贮和平流的通量贡献是非常小的。尤其是在均匀下垫面下,方程中的存贮和平流项的通量贡献可以忽略,因此估算地气通量时仅需考虑涡度相关项和Webb修正项即可。而在非均匀下垫面下,在1 d以上的时间尺度上,为方便计算,可以忽略存贮和平流的通量贡献;而在小时这样的时间尺度上,从物质能量收支守恒的角度考虑,估算地气通量需要包括存贮和平流的通量贡献。  相似文献   

7.
本文对1985年8月下旬北部湾热带低压发展为台风的演变过程作了诊断分析。发现在台风的生成和加强的过程中,涡旋动能出现显著的加强和向下转移,最大涡度层和无辐散层明显下降.与此同时,暖心结构也逐步形成。这一过程与低层西南季风的增强北进,卷入台风环流中的过程密切相关。涡旋动能收支的计算表明,低压由于处在强的水平切变和垂直切变基流中,风场和温度场的不对称和暖心结构的形成,使台风获得正压和斜压不稳定能量,加之以积云对流为代表的次网格过程向涡旋运动输送能量,从而使低压发展为台风。台风的衰亡是由于登陆后低层偏冷气流的入侵和下部暖心结构的破坏,使台风只有纬向平均气流取得能量,不足以补偿摩擦耗散和位能通量的辐散,因而减弱为低压的。   相似文献   

8.
本文利用常规探测资料计算和分析了1983年3月1日影响珠江三角洲的一次强对流天气过程的总动能收支。结果表明:就时间区域平均而言,动能制造项是总动能源,动能水平通量散度和次网格尺度过程则消耗区域的动能;几乎所有的主要收支项数值,都在高空急流所在的对流层上层最大;网格尺度的垂直输送使动能由对流层中、低层向高层输送,但次网格尺度过程使动能下传。在风暴影响前后,各能量的收支项都有明显的改变。   相似文献   

9.
Some kinematic and dynamic structures of a microburst-producing storm in Colorado were investigated. Dual-Doppler data collected on 14 July, 1982 at 1647 MDT, during the Joint Airport Weather Studies (JAWS) project at Denver's Stapleton International Airport, were objectively analyzed to produce a three-dimensional wind field. The domain of interest had a horizontal dimension of 10 by 10 km centered on the microburst. Vertical velocities were computed by integrating the anelastic continuity equation downward from the storm's top with variational adjustment. Subsequently, fields of deviation perturbation pressure, density, and virtual temperature were retrieved from a detailed wind field using the three momentum equations.Results show that the microburst being investigated is embedded within a high-reflectivity region associated with heavy precipitation. A strong downflow impinges on the surface producing a stagnation mesohigh inside the microburst. This mesohigh is accompanied by mesolows in the strongest outflow regions, forming a pronounced horizontal perturbation pressure gradient outward from the high-pressure center. The outflow regions extend from the surface to approximately 1 km AGL with maximum divergence in excess of 10 –2 s–1. Inclusion of friction in the pressure equation improves pressure recovery at all levels, especially in the atmospheric boundary layer (ABL). The microburst occurrence in the ABL enhances eddy transfer of momentum. Magnitudes of eddy viscosity and eddy stresses increase as a result of the microburst.  相似文献   

10.
Turbulent kinetic energy and its vertical flux were measured at two heights over a paddy field. The vertical transport of turbulent kinetic energy was always downward right above the paddy field and was frequently downward at higher levels within a few metres above the crop. Contributions to the downward transport arise mainly from the turbulent kinetic energy of horizontal wind velocity components. It is shown from the analysis of probability distributions that appreciable transport takes place intermittently in a few large downward bursts and that these downdrafts are efficient for downward energy transport.In the budget of turbulent kinetic energy, the flux divergence term and the energy dissipation term are the main loss terms under unstable conditions. These terms increase in magnitude with increasing instability. Buoyant production is insufficient to balance these losses. The imbalance term involving the pressure-work term is probably one of the main energy sources in unstable conditions.  相似文献   

11.
The impact of mesoscale moisture variability on the vertical energy transfer through a pre-frontal boundary layer is studied with NOPEX aircraft data. The moisture variability relates to a cold front that passed the area 2 1/2 hours after the observations. We find a density front ahead of the cold front. The large vertical divergence of the turbulent moisture flux in the surface layer is partly related to this moisture variability. Large scale horizontal advection contributes to the observed vertical turbulent flux divergence. The estimated horizontal mesoscale advection term in the budget of sensible heat and moisture is on average small but locally it can be large. This term acts to re-distribute moisture in the boundary layer and leads to sub-grid variations of relative humidity, which is an important quantity for boundary-layer cloud models. The distinct spatial variations of specific humidity are mainly related to synoptic forcing and not to heterogeneity in the surface energy balance.  相似文献   

12.
罗潇  李国平 《气象科学》2019,39(2):226-236
利用NCEP FNL(1°×1°)全球分析资料,采用动能梯度的定义和扰动动能方程,对2014年8月25—27日初生于青海省东南部之后东移到四川省中部产生天气影响过程的高原切变线进行了能量诊断分析。结果表明:在高原切变线发生发展时,切变线的位置和强的地转偏差及动能梯度大值区相对应,动能梯度模值的水平、垂直分布和相应的散度分布一致,可以反映切变线的基本结构特征;引入动能梯度有助于从能量变化视角来理解高原切变线的发展演变。扰动动能大值区的分布和切变线的走向一致,在切变线发展初期,扰动动能明显增大。扰动动能平流项和正压转换项的值都比较小,不足以反映切变线演变过程中的能量变化,而斜压转换项和扰动位势平流项是扰动动能收支的主导项;在切变线成熟阶段,扰动有效位能向扰动动能的转换最大,斜压转换项是高原切变线发展过程中能量转换的重要途径,有利于切变线上的上升运动加强。扰动动能趋势项可以较好预示切变线的发展态势,扰动非地转位势通量及其散度对高原切变线的生消及移动具有较好的指示意义。  相似文献   

13.
The structure of nocturnal inversions in the first 300 m of the atmosphere is analyzed using observational data from the Boulder Atmospheric Observatory (BAO) from March through June 1981. The temperature profiles show more than one inversion layer 41% of the time during the observational period. The vertical distributions of wind speed and moisture also show evidence of stratification during these multiple-layer events. The relation between the radiative cooling rate in time and height, including moisture, and the vertical structure of the multiple layers is calculated. The vertical distribution of eddy kinetic energy and the turbulent vertical fluxes of heat and momentum are also calculated. Turbulent structure in the elevated inversion layers is more complicated than that in the single-layer, stable nocturnal boundary layer. The total heat budget for a multiple-layer case is calculated, and turbulent cooling is found to be negligible relative to radiative cooling and to horizontal advection and/or horizontal divergence of heat flux.  相似文献   

14.
Equations are presented to correct eddy-covariancemeasurements for both fluctuations in density andnon-zero mean advection, induced by convergence ordivergence of flow, and spatial source/sinkinhomogeneity, under steady-state and transientconditions. This correction collapses to theWebb–Pearman–Leuning expression ifthe mean vertical velocity is zero, and formally addsthe Webb–Pearman–Leuning expression to the correctionssuggested by Lee for conditions ofnon-zero vertical velocity and source/sink and meanscalar horizontal homogeneity. The equation requiresmeasurement of the mean vertical gradients of thescalar concentration of interest (air temperature,humidity, CO2) as well as an accurateestimation of the mean vertical velocity, in additionto the vertical eddy covariance of the scalar. Simplemethods for the approximation of sensor tilt andcomplex terrain flow angle are presented, to allowestimation of non-zero mean vertical velocities. Theequations are applied to data from a maize crop and aforest to give examples of when the correction issignificant. In addition, a term for thethermodynamic expansion energy associated with watervapour flux is derived, which implies that the sonictemperature derived sensible heat flux will accuratelyinclude this contribution.  相似文献   

15.
A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.  相似文献   

16.
A diagnostic energetic analysis is conducted to study the kinetic energy budget during the extratropical transition (ET) of tropical cyclone (TC) Yagi (2006), using high-resolution numerical model output. The results show that the upper-level jet stream makes great contribution to the redevelopment of Yagi. When the Yagi approached to the upper-level jet stream, the horizontal flux of kinetic energy associated with the jet was the major cause of the ET. During the transition of Yagi, the horizontal flux of kinetic energy caused by the change of environmental field related to the TC movement only accounted for about 25?% of the total flux, while the horizontal convergence to Yagi under the action of the jet was the major portion of the total horizontal flux. Moreover, the work of pressure gradient force changed from a source of kinetic energy to a sink in the upper troposphere before and after the ET, however, it acted as a source of kinetic energy in the lower and middle troposphere all the time, and both the vertical and horizontal fluxes of kinetic energy caused by the upper-level jet increased the kinetic energy in the upper troposphere. The sub-grid scale friction and dissipation, which shows their maximum effects in the lower troposphere especially in the atmospheric boundary layer, played major consumption roles against the pressure gradient force. Furthermore, the consumption was almost entirely out-of-phase for the convective transport of kinetic energy in vertical, and inhibited the vertical flux of kinetic energy. In addition, there were significant high-frequency disturbances before and after the ET characterized by out-of-phase kinetic energy changes between upper and lower levels, thus, the vertically integrated kinetic energy budget in the air column could not give a reasonable physical image for TC kinetic energy variation.  相似文献   

17.
利用常规地面、高空观测、雷达及ERA5再分析等资料,对山东初冬一次极端降水、大风天气成因分析,结果表明:低槽东移发展,冷空气南压,低空切变线配合东北、西北地区地面高压坝形成的“阻挡”形势利于极端降水的产生。本次水汽条件具有较强的极端性,水汽通量辐合远强于气候平均态,925 hPa和700 hPa水汽通量辐合大值区分别与雨、雪区域配合较好。降雨时垂直上升运动中心在边界层,升至600 hPa时转为降雪,降雨时低层辐合、高层辐散,降雪时由低到高呈辐散-辐合-辐散分布。冷锋过境条件对称不稳定触发产生对流,随后在冷锋后侧逆温层上由锋生过程的上升支环流强迫产生高架对流。强冷空气扰动从内蒙古高原下滑至华北平原,与近地面冷平流汇合增强,产生较强变压风,同时促进了势能向动能转换和动量下传。地形强迫造成下沉运动增强,华北地区低层形成锋面次级环流,环流前部锋区暖界面为地转偏差辐合,冷界面为地转偏差辐散。环流内有水平动能和地转偏差大值区,偏北气流和下沉运动使水平动能向南、向下输送,导致地面极端大风。  相似文献   

18.
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period 10 min),gusty disturbances(1 min period 10 min)and turbulence fluctuations(period 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.  相似文献   

19.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

20.
Based on basic equations in isobaric coordinates and the quasi-geostrophic balance,an eddy-flux form budget equation of the divergent wind has been derived. This newly derived budget equation has evident physical significance. It can show the intensity of a weather system,the variation of its flow pattern,and the feedback effects from smaller-scale systems(eddy flows). The usefulness of this new budget equation is examined by calculating budgets for the strong divergent-wind centers associated with the South Asian high,and the strong divergence centers over the Tibetan Plateau,during summer(June–August) 2010. The results indicate that the South Asian high significantly interacts with eddy flows. Compared with effects from the mean flow(background circulation),the eddy flows' feedback influences are of greater importance in determining the flow pattern of the South Asian high. Although the positive divergence centers over the Tibetan Plateau intensify through different mechanisms,certain similarities are also obvious. First,the effects from mean flow are dominant in the rapid intensification process of the positive divergence center. Second,an intense offsetting mechanism exists between the effects associated with the eddy flows' horizontal component and the effects related to the eddy flows' convection activities,which weakens the total effects of the eddy flows significantly. Finally,compared with the effects associated with the convection activities of the mean flow,the accumulated effects of the eddy flows' convection activities may be more favorable for the enhancement of the positive-divergence centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号