首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 537 毫秒
1.
本文报告云南天文台太阳多波段光谱仪通过技术改造,把传统光谱仪优点和二维成像光谱仪的优点结合起来,采用高精度扫描方法同时获得10波段光谱,使之发展成为一种新型的光谱仪——太阳三维光谱仪的研制过程。这种三维光谱仪的优点是可同时得到活动区中每一条谱线轮廓,从而可以得到它的物理量场,并且可以观测这些物理量场的时间和空间上的演化。 文中介绍太阳多波段快速扫描光谱仪的光学系统和为实现三维观测而研制的可控制高精度45°镜转台,具有不同画幅面的专用照像机以及微机控制的自动化电器系统,望远镜电控系统。  相似文献   

2.
1 m新真空太阳望远镜(New Vacuum Solar Telescope, NVST)的科学目标之一是对太阳活动区域进行二维光谱扫描观测。基于1 m新真空太阳望远镜多波段光谱仪(Multi-Band Spectrometer, MBS)和大色散光谱仪(High Dispersion Spectrometer, HDS)提出了垂直双光谱切换扫描系统,可实现相互垂直的两个光谱仪的光谱扫描观测任务,并实现两个光谱仪之间的切换。分析了光谱扫描观测的原理和过程,结合终端仪器系统的具体构造,完成了扫描系统的光机结构设计和装调分析,并对扫描系统进行了性能测试,包括系统稳定性、扫描直线度以及扫描步幅精度。测试结果满足预期功能需求和精度要求,为后续1 m新真空太阳望远镜进行常规光谱扫描观测提供了支持。  相似文献   

3.
为云南天文台多波段太阳光谱仪改造而专门研制的高精度、小步距角扫描回转台能实现对太阳像的自动扫描。扫描时,竖轴的晃动角小于1″,扫描步距角为0.01°或0.005°,扫描精度为0.001°。  相似文献   

4.
云南天文台是参加日地系统整体行为研究计划的单位之一,有四套太阳光学观测设备参加日地大事件的联合观测。它们是:13cm折射望远镜、18cm耀斑巡视望远镜、26cm高分辨太阳光球色球望远镜和多波段太阳光谱仪。13cm折射望远望和18cm耀斑巡视镜分别进行黑子描绘、照相和耀斑巡视的常规观测。它们所得的资料供云南天文台《太阳活动月报》、《中国太阳物理资料》发表。耀斑资料还供SGD发表。黑子和耀斑的常规观测为太阳活动预报提供及时的信息和基础。 26cm高分辨真空太阳光球色球望远镜用于太阳活动区现象特别是耀斑现象的精细结构研究。在耀斑观测中常使用H_a的±0.5A,±1.0A对人观测,所得的耀斑偏带照片清楚显示耀斑的亮点和亮块相对于黑子的位置,在耀斑研究中十分有用。 多波段太阳光谱仪的供光定天镜口径40cm,成像镜30cm,太阳象有152.2mm和418.5mm两个交替使用,色散1A/mm,10个波段分别为H_a、D_(1,2,3),H_δ、HeⅡ、H_β、H_γ、H,K、H_(9-13)和H_(13-∞)。利用计算机控制45°转象镜精确地快速扫描太阳象并控制10个波段的同时照相,这样可以快速地记录活动区中每一点的多波段光谱轮廓,进而测定各种物理量、为研究活动区物理场的时空演化提供重要手段。  相似文献   

5.
1 m新真空太阳望远镜(New Vacuum Solar Telescope,NVST)是国内用于对太阳进行观测和研究的大型科研设备,针对太阳活动区光谱观测的需求,在现有的大色散光谱仪及多波段光谱仪基础上,设计了光谱扫描设备,并基于C#设计了一套观测控制系统软件,实现扫描设备的运动控制和观测数据的采集。进行光谱扫描观测时,计算机控制扫描设备步进运动,并利用图像采集卡通过Camera Link总线采集CCD/CMOS相机的探测数据,基于多线程技术采集观测数据,将采集的图像数据存储成FITS(Flexible Image Transport System)文件,并将光谱图像数据处理成灰度图像用于软件界面监视。此套软件已用于1 m太阳望远镜光谱扫描观测,测试结果满足预期功能需求,为后续观测系统功能升级提供了良好的扩展性。  相似文献   

6.
1m红外太阳塔是我国未来重点发展的地面太阳观测设备,本文的所有工作均围绕着与此相关的红外波段太阳观测技术方法展开。1.针对望远镜实验平台-云台太阳光谱仪,建立了光谱仪分光流量,工用多种实验手段验证了其可靠性。利用该模型计算了Fe Ⅰ1.56μm红外太阳光 谱的分光流量,分析了实验观测的可行性及改进方案。2.针对探测器实验平台-PtSi红外焦平面阵列相机,建立了FeⅠ1.56μm光谱观测信噪比模型,模拟了各种噪声对观测的影响。在此基础上,在国内首次成功进行了FeⅠ1.56μm红外太阳光谱的面阵观测实验。3.在红外观测实验所处的高背景低对比度条件下,讨论了红外太阳光谱观测的图像处理方法,分析了观测中出现的干涉条纹的来源及解决办法,初步建立起了一整套红外太阳光谱与成像的定标方法和图像处理方法。4.首次利用PVA材料,设计研制了一套FeⅠ1.56μm近红外Stokes参量偏振仪,并将该偏振仪安装在美国国立天文台McMath望远镜上进行了观测实验。针对一太阳黑子,通过扫描进行了二维的Stokes参量观测。同时建立了一套从Stokes参量反演磁矢量场的方法,并将反演的结果与怀柔太阳磁场望远镜的观测结果进行了比对。5.针对1m红外太阳塔的太阳光谱仪系统,给出了垂直多波段光谱仪和红外大色散光谱仪的光、机初步设计。6.针对1m红外太阳塔的科学目标,提出了多波段光谱仪探测器系统方案,对红外大色散光谱仪所使用的红外探测器也进行了初步方案设计。  相似文献   

7.
1m红外太阳塔是我国未来重点发展的地面太阳观测设备 ,本文的所有工作均围绕着与此相关的红外波段太阳观测技术方法展开。1 .针对望远镜实验平台—云台太阳光谱仪 ,建立了光谱仪分光流量模型 ,并用多种实验手段验证了其可靠性。利用该模型计算了FeⅠ 1 .56μm红外太阳光谱的分光流量 ,分析了实验观测的可行性及改进方案。2 .针对探测器实验平台—PtSi红外焦平面阵列相机 ,建立了FeⅠ 1 .56μm光谱观测信噪比模型 ,模拟了各种噪声对观测的影响。在此基础上 ,在国内首次成功进行了FeⅠ1 .56μm红外太阳光谱的面阵观测实验。3 .在红外观测实验所处的高背景低对比度条件下 ,讨论了红外太阳光谱观测的图像处理方法 ,分析了观测中出现的干涉条纹的来源及解决办法 ,初步建立起了一整套红外太阳光谱与成像的定标方法和图像处理方法。4 .首次利用PVA材料 ,设计研制了一套FeⅠ 1 .56μm近红外Stokes参量偏振仪 ,并将该偏振仪安装在美国国立天文台McMath望远镜上进行了观测实验。针对一太阳黑子 ,通过扫描进行了二维的Stokes参量观测。同时建立了一套从Stokes参量反演磁矢量场的方法 ,并将反演的结果与怀柔太阳磁场望远镜的观测结果进行了比对。5.针对 1m红外太阳塔的太阳光谱仪系统 ,给出了垂直多波段光谱仪和红外  相似文献   

8.
1989年8月17日耀斑环的视向速度场   总被引:2,自引:1,他引:1  
“多云模型”是处理太阳活动体光变谱不对称轮廓的有效方法,本给出了该方法的一个具体应用实例,利用云南天台二维多波段太阳光谱仪观测的1989年8月17日耀斑Hβ波段光谱资料,得到了该耀斑环的视向速度场。  相似文献   

9.
多云模型’’是处理太阳活动体光谱不对称轮廓的有效方法,本文给出了该方法的一个具体应用实例,利用云南天文台二维多波段太阳光谱仪观测的1989年8月17日耀斑环Hβ波段光谱资料,得到了该耀斑环的视向速度场.  相似文献   

10.
在太阳长狭缝光谱观测中,光谱的狭缝方向和色散方向应该分别与CCD探测器的两个边缘平行。但实际上,由于狭缝、光栅、CCD探测器的机械安装精度等原因,会造成他们之间的位置关系不匹配,导致得到的太阳光谱总是存在一定的倾斜和变形。即使有时这些倾斜很微小,也会对太阳光谱的平场计算造成严重影响,从而影响整个光谱数据的处理过程。对抚仙湖1 m新真空红外太阳望远镜多波段光谱仪得到的一组Hα光谱数据的倾斜量做了测量和分析,并讨论了其对太阳光谱平场计算的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号