首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, sea surface salinity(SSS) indexes are derived from reanalysis and observational datasets to distinguish the two types of(Central Pacific(CP) and Eastern Pacific(EP)) El Ni?o events in the tropical Pacific. Based on the SSS anomalous spatial and temporal pointwise correlations with sea surface temperature(SST) indexes of two types of El Ni?o events, the key areas with SSS variations for EP and CP El Ni?o events are identified. For EP El Ni?o events, the key areas are located over an arcuate area centered at(0°, 130°E) and in the central equatorial Pacific covering(5°S–5°N, 175°W–158°W). For CP El Ni?o events, the key areas are located in the northeastern western Pacific covering(2°N, 142°E–170°E) and in the southeastern Pacific covering(20°S–10°S, 135°W–95°W). The key areas for EP and CP El Ni?o events in this study are not located near the dateline in the equatorial Pacific and differ from those obtained from the regression or composite methods.Accordingly, these key areas are used to construct SSS indexes, termed as the CP/EP El Ni?o SSS index(CSI/ESI), to distinguish EP and CP El Ni?o events independently. The SSS indexes are verified by different datasets over varying time periods and they can be adequately used to identify the two types of El Ni?o events and serve as another useful tool for monitoring ENSO. These analyses offer novel insight into how to represent the diversity of El Ni?o events.  相似文献   

2.
The interannual variability of the boreal winter (DJF) Hadley Cell strength during 1979-2008 is investigated using NCEP/NCAR reanalysis data. The results of AMIP simulation of LASG/IAP AGCM GAMIL2.0 are compared against the reanalysis data. Both the reanalysis data and the simulation show that the interannual variability of the Hadley Cell strength has a non-uniform spatial distribution, as evidenced by the 1st Empirical Orthogonal Function (EOF) mode. The change of Hadley cell strength in the tropics is opposite to that in the subtropical regions. Our analysis indicates that a positive phase of EOF1 is associated with an El Ni o-like warmer equatorial central and eastern Pacific and a warmer southern Indian Ocean. Above features are also seen in the results of GAMIL2.0 simulation, indicating that the interannual variability of the Hadley Cell strength is driven by the tropical ocean variability. Our analysis also demonstrates that the contribution of the warmer central-eastern Pacific to the 1st EOF mode is larger than that of the South Indian Ocean. The SST forcing enhances the local Hadley circulation strength in the central Pacific and Africa (30°S-30°N, 150°E-90°W), while it weakens the local Hadley circulation in other regions (30°S-30°N, 90°-10°W). The western Pacific anticyclone remotely driven by the El Ni o forcing leads to a weakened local Hadley cell in the Northern Hemisphere, while the South Indian Ocean anticyclone driven by the remote El Ni o forcing and the local warmer SST anomalies in the southern Indian Ocean results in a weakened local Hadley Cell in the Southern Hemisphere. The enhancement of the Pacific local Hadley Cell is stronger (weaker) than that of the Atlantic, the western Pacific, and the southern Indian Ocean in the tropical (subtropical) part, thus for the zonal mean condition the strength of the total Hadley Cell is stronger (weaker) in the tropical (subtropical) limb. The amplitude of the Hadley Cell change in the Northern Hemisphere is stronger than that in the Southern Hemisphere. Hence the leading interannual variability mode of boreal winter Hadley Cell exhibits a non-uniform spatial pattern.  相似文献   

3.
Most ocean-atmosphere coupled models have difficulty in predicting the El Nio-Southern Oscillation(ENSO) when starting from the boreal spring season. However, the cause of this spring predictability barrier(SPB) phenomenon remains elusive. We investigated the spatial characteristics of optimal initial errors that cause a significant SPB for El Nio events by using the monthly mean data of the pre-industrial(PI) control runs from several models in CMIP5 experiments. The results indicated that the SPB-related optimal initial errors often present an SST pattern with positive errors in the central-eastern equatorial Pacific, and a subsurface temperature pattern with positive errors in the upper layers of the eastern equatorial Pacific, and negative errors in the lower layers of the western equatorial Pacific. The SPB-related optimal initial errors exhibit a typical La Ni-a-like evolving mode, ultimately causing a large but negative prediction error of the Nio-3.4 SST anomalies for El Nio events. The negative prediction errors were found to originate from the lower layers of the western equatorial Pacific and then grow to be large in the eastern equatorial Pacific. It is therefore reasonable to suggest that the El Nio predictions may be most sensitive to the initial errors of temperature in the subsurface layers of the western equatorial Pacific and the Nio-3.4 region, thus possibly representing sensitive areas for adaptive observation. That is, if additional observations were to be preferentially deployed in these two regions, it might be possible to avoid large prediction errors for El Nio and generate a better forecast than one based on additional observations targeted elsewhere. Moreover, we also confirmed that the SPB-related optimal initial errors bear a strong resemblance to the optimal precursory disturbance for El Nio and La Nia events. This indicated that improvement of the observation network by additional observations in the identified sensitive areas would also be helpful in detecting the signals provided by the precursory disturbance, which may greatly improve the ENSO prediction skill.  相似文献   

4.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

5.
Mixed-layer water oscillations in tropical Pacific for ENSO cycle   总被引:2,自引:0,他引:2  
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated,which show the following results.(1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160°W as its axis and a meridional seesaw pattern with 6-8°N as its transverse axis.The meridional oscillation has a phase lag of about 90° to the zonal oscillation,both oscillations get together to form the El Ni?o/La Ni?a cycle,which be-haves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12°N.(2) There are two main patterns of wind stress anomalies in the tropical Pacific,of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific,and the abnormal cross-equatorial flow wind stress and its corresponding divergence field,which has a sign opposite to that of the equatorial region,in the off-equator of the tropical North Pacific,and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly.(3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle,which results in the sea level tilting,provides an initial potential energy to the mixed layer water oscillation,and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12°N of the North Pacific basin,therefore determines the amplitude and route for ENSO cycle.The ITCZ anomaly has some effects on the phase transition.(4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific,which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation,which in turn intensifies the oscillation.The coupled system of ocean-atmo-sphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle.In conclusion,the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12°N.When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation,the oscillation will be stronger or maintain as it is,while when the force is less than the resistance,the oscillation will be weaker,even break.  相似文献   

6.
The tropical Indian Ocean(TIO) displays a uniform basin-wide warming or cooling in sea surface temperature(SST) during the decay year of El Niδo-Southern Oscillation(ENSO) events. This warming or cooling is called the tropical Indian Ocean Basin Mode(IOBM). Recent studies showed that the IOBM dominates the interannual variability of the TIO SST and has impacts on the tropical climate from the TIO to the western Pacific. Analyses on a 148-year-long monthly coral δ 18 O record from the Seychelles Islands demonstrate that the Seychelles coral δ 18 O not only is associated with the local SST but also indicates the interannul variability of the basin-wide SST in the TIO. Moreover, the Seychelles coral δ 18 O shows a dominant period of 3–7 years that well represents the variability of the IOBM, which in return is modulated by the inter-decadal climate variability. The correlation between the Seychelles coral δ 18 O and the SST reveals that the coral δ 18 O lags the SST in the eastern equatorial Pacific by five months and reaches its peak in the spring following the mature phase of ENSO. The spatial pattern of the first EOF mode indicates that the Seychelles Islands are located at the crucial place of the IOBM. Thus, the Seychelles coral δ 18 O could be used as a proxy of the IOBM to investigate the ENSO teleconnection on the TIO in terms of long-time climate variability.  相似文献   

7.
Although the El Ni?o-Southern Oscillation(ENSO) originates and develops in the equatorial Pacific, it has substantial climatic impacts around the globe. Thus, the ability to effectively simulate and predict ENSO one or more seasons in advance is of great societal importance, but this remains a challenging task. The main obstacles are the diversity, complexity,irregularity, and asymmetry of ENSO. The purpose of this article is to organically integrate the understanding of ENSO based on current progress on the physical mechanisms, prediction, and connections between the interannual ENSO phenomenon and physical processes on other time and space scales, and to provide guidance for future studies by extracting specific important questions.  相似文献   

8.
The surface sediments from the eastern Pacific Ocean are mainly composed of biogenetic fossils, silicate detritus, ferromanganese spherolites and clay fractions. Among them, the clay fractions with grain size less than 2 μm (mainly clay minerals) are mostprevalent, especially in the non-calcareous sediments (the content of calcareous fossils is less than 5%), the clay fraction contents often exceed 70%[1―5]. Because of the influences of Antarctic Bottom Water (AABW), equatorial currents, …  相似文献   

9.
Here we assessed the performances of IAP/LASG climate system model FGOALS-g2 and FGOAS-s2 in the simulation of the tropical Pacific Walker circulation(WC). Both models reasonably reproduce the climatological spatial distribution features of the tropical Pacific WC. We also investigated the changes of WC simulated by two versions of FGOALS model and discussed the mechanism responsible for WC changes. Observed Indo-Pacific sea level pressure(SLP) reveals a reduction of WC during 1900–2004 and 1950–2004, and an enhancement of WC during 1982–2004. During the three different time spans, the WC in FGOALS-g2 shows a weakening trend. In FGOALS-s2, tropical Pacific atmospheric circulation shows no significant change over the past century, but the WC strengthens during 1950–2004 and 1982–2004. The simulated bias of the WC change may be related to the phase of the multi-decadal mode in coupled models, which is not in sync with that in the observations. The change of WC is explained by the hydrological cycle constraints that precipitation must be balanced with the moisture transporting from the atmospheric boundary layer to the free troposphere. In FGOALS-g2, the increasing amplitude of the relative variability of precipitation(?P/P) is smaller(larger) than the relative variability of moisture(?q/q) over the tropical western(eastern) Pacific over the three time spans, and thus leads to a weakened WC. In FGOALS-s2, the convective mass exchange fluxes increase(decrease) over the tropical western(eastern) Pacific over the past 53 a(1950–2004) and the last 23 a(1982– 2004), and thus leads to a strengthened WC. The distributions of sea surface temperature(SST) trends dominate the change of WC. Over the past 55 a and 23 a, tropical Pacific SST shows an El Ni?o-like(a La Ni?a-like) trend pattern in FGOALS-g2(FGOALS-s2), which drives the weakening(strengthening) of WC. Therefore, a successful simulation of the tropical Pacific SST change pattern is necessary for a reasonable simulation of WC change in climate system models. This idea is further supported by the diagnosis of historical sea surface temperature driven AGCM-simulations.  相似文献   

10.
The relationship between the sea ice cover in the North Pacific and the typhoon frequency has been studied in this paper. It follows that the index for the sea ice cover in the North Pacific (ISA) both in December-January-February (DJF) and in March-April-May (MAM) is negatively correlated with annual typhoon number over the western North Pacific (TNWNP) during 1965―2004, with correlation coeffi-cients of -0.42 and -0.49 respectively (above 99% significant level). Large sea ice cover in the North Pacific tends to decrease TNWNP. Positive ISA (MAM) is associated with the tropical circulation and SST anomalies in the North Pacific, which may lead to unfavorable dynamic and thermal conditions for typhoon genesis over WNP from June to October (JJASO). The variability of the atmospheric circula-tion over the North Pacific, associated with the ISA anomaly in MAM is connected to the tropical at-mospheric circulation variability in MAM via the teleconnection wave train. Besides, as the tropical circulation has strong seasonal persistency from the MAM to JJASO, thus, the ISA in MAM-related variability of the tropical atmospheric circulation as well as the SST can affect the typhoon activity over the western North Pacific.  相似文献   

11.
Research on the large scale spatial heterogeneity of great intraplate shallow earthquakes on the Chinese mainland and adjacent areas discussed in this paper shows that(1)there are four main high seismicity areas:the North China seismic area in the eastern part of China(30°-42°N),the Southeastern Coast seismic area in the eastern part of China(19°-25°N),the North-South seismic area in the western part of China and its adjacent areas(Burma-China-Mongolia),and the Central Asian seismic area in the western part of China and its adjacent areas(Pamir-Tianshan Mountains-Baikal);(2)the four intraplate seismic areas that are approximately perpendicular to those sections of the Eurasia plate boundary that surrounds the Chinese mainland and its adjacent areas,where the Eurasia plate has a strong seismic coupling with the North America-Pacific Ocean-Philippine Sea plate and the India plate; and(3)the large scale spatial heterogeneity of intraplate seismicity in China and its adjacent areas that might be control  相似文献   

12.
How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1B scenario,we generated summer(September)ice-free Arctic conditions,also referred to as Blue Arctic conditions,and then used the corresponding monthly sea surface temperature(SST)and a set of CO2concentrations to drive an AGCM model to simulate the resulting changes in background conditions affecting typhoon activity over the western North Pacific.Our results show that,during typhoon season(June to October),atmospheric and ocean circulations over the western North Pacific would be significantly different from the present circulations.Changes in the vertical shear of zonal wind and outgoing longwave radiation(OLR)in the western North Pacific are favorable for westward and northward shift,respectively,of the location of typhoon genesis.Moreover,changes in the above fields over the key area may be conducive to less frequent typhoons.In addition,the tropical cyclone genesis potential index(GPI)over the western North Pacific would decrease(increase)east(west)of 150°E(140°E).  相似文献   

13.
An intermediate ocean-atmosphere coupled model is developed to simulate and predict the tropical interannual variability. Originating from the basic physical framework of the Zebiak-Cane(ZC) model, this tropical intermediate couple model(TICM) extends to the entire global tropics, with a surface heat flux parameterization and a surface wind bias correction added to improve model performance and inter-basin connections. The model well reproduces the variabilities in the tropical Pacific and Indian basins. The simulated El Ni?o-Southern Oscillation(ENSO) shows a period of 3–4 years and an amplitude of about 2°C, similar to those observed. The variabilities in the Indian Ocean, including the Indian Ocean basin mode(IOBM) and the Indian Ocean Dipole(IOD), are also reasonably captured with a realistic relationship to the Pacific. However, the tropical Atlantic variability in the TICM has a westward bias and is overly influenced by the tropical Pacific. A 47-year hindcast experiment using the TICM for the period of 1970–2016 indicates that ENSO is the most predictable mode in the tropics. Skillful predictions of ENSO can be made one year ahead, similar to the skill of the latest version of the ZC model, while a "spring predictability barrier" still exists as in other models. In the tropical Indian Ocean, the predictability seems much higher in the west than in the east. The correlation skill of IOD prediction reaches 0.5 at a 5-month lead, which is comparable to that of the state-of-the-art coupled general circulation models. The prediction of IOD shows a significant "winter-spring predictability barrier", implying combined influences from the tropical Pacific and the local sea-air interaction in the eastern Indian Ocean. The TICM has little predictive skill in the equatorial Atlantic for lead times longer than 3 months, which is a common problem of current climate models badly in need of further investigation.  相似文献   

14.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   

15.
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103°54.48'W, lat. 12°42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13°N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%―1.85%) and Co (65×10?6―704×10?6) contents, and contain Co Cu Zn Ni> 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13°N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13°N are lower in ΣREE (5.44×10?6―17.01×10?6), with a distinct negative Ce anomaly (0.12 ― 0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13°N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13°N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher.  相似文献   

16.
Relationships between the North Pacific Oscillation (NPO) and the typhoon as well as hurricane fre-quencies are documented. The correlation between NPO index in June-July-August-September and the annual typhoon number in the western North Pacific is 0.37 for the period of 1949―1998. The NPO is correlated with the annual hurricane number in the tropical Atlantic at -0.28 for the same period. The variability of NPO is found to be concurrent with the changes of the magnitude of vertical zonal wind shear, sea-level pressure patterns, as well as the sea surface temperature, which are physically asso- ciated with the typhoons and hurricanes genesis. The NPO associated atmospheric circulation vari- ability is analyzed to explain how NPO is linked with variability of the tropical atmospheric circulation in the western Pacific and the tropical Atlantic, via the atmospheric teleconnection.  相似文献   

17.
<正>El Nio is a remarkable climate phenomenon with a basinwide warming of sea surface temperatures(SST) in the easterncentral tropical Pacific. El Nio means The Little Boy, or Christ Child in Spanish, and on the contrary, a basinwide cooling of the tropical Pacific SST is called La Nia that means The Little Girl in Spanish. Always, a large-scale SST change in the tropical  相似文献   

18.
19.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

20.
We employed a double-difference algorithm(hypoDD)to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964?2003 reported by the International Seismological Center(ISC).The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt.Based on this feature and other evidences,we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zon...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号