首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Shehata  W.M.  Amin  A.A. 《Natural Hazards》1997,16(1):81-95
The aridity of the Arabian Peninsula's deserts ranges between arid to hyperarid with hot dry climate, scarce precipitation and sparse vegetation. These harsh environmental conditions enhance some geomorphologic processes more than others, cause specific geotechnical problems, and increase desertification.From west to east, the general physiography of Saudi Arabia shows the Red Sea coastal plains and the escarpment foothills called Tihama followed by the Arabian Shield mountains, the Arabian Shelf plateau and finally the Arabian Gulf coastal plains. Sand moves by wind either as drifting sand or migrating dunes in four major sand seas, over the Arabian Shelf, and in the inter-mountain valleys, in the Arabian Shield causing problems of erosion and deposition. Human activities in the deserts may cause more instability to the sand bodies, enlarging the magnitude of the problem. Fine silty soil particles also move by wind, depositing loess mainly in selected areas downwind in the Tihama. These loess deposits subside and may form earth fissures by the process of hydrocompaction upon wetting. The addition of water can be either natural through storms or man-made through human agricultural or civil activities. Extensive sabkhas exist along the coastal plains of both the Red Sea and Arabian Gulf. The sabkha soil may also heave by salt re-crystallization or collapse by wetting. The shallow groundwater brines present in sabkhas also attack and corrode civil structures. Urbanization and excessive groundwater pumping may also deplete the fresh groundwater resources and may cause subsidence, ground fissuring and surface faulting as observed in some locations in the Arabian Shield. Although the average annual precipitation is very low, rain usually falls in the form of torrential storms, collected by dry valley basins and causing floods to unprotected downstream areas on the coastal plains of the Red Sea.The desert environment, being a fragile echo system, needs to be treated with care. Intercommunications between different national and international agencies and education of the layman should help to keep the system balanced and reduce the resulting environmental hazards. In addition, any suggested remedial measures should be planned with nature and engineered with natural materials.  相似文献   

2.
Although evidence for Quaternary environmental changes in the Arabian Peninsula is now growing, research has mostly been conducted in the United Arab Emirates (UAE) and in the Sultanate of Oman. There have been virtually no recent studies in Saudi Arabia, especially in the central region such as around Al‐Quwaiayh. In this area there are a series of outwash plains developed along the eastern edge of the Arabian Shield that formed in the late Quaternary. Four sedimentary sections, which are representative of the deposits that have accumulated, have been studied and five luminescence ages obtained. These are the first luminescence ages acquired from Quaternary sediments in central Saudi Arabia. The preserved fluvial deposits in the study area have formed during humid events at ca. 54 ka, ca. 39 ka and ca. 0.8 ka. In more recent times aeolian sands have been encroaching on to the distal parts of the outwash plains. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Drought and human adjustment in Saudi Arabia   总被引:1,自引:0,他引:1  
Drought is one of the natural hazards which causes death and damage for property particularly in drylands of the world. Drought as a natural hazard tends to limit and disrupt human activities. On the other hand, man has tried to adjust his living conditions to this hazard. The adjustment to drought is different from one country to another. Adjustment to drought is affected by culture, income, and by the political system in the country. In the case of Saudi Arabia adjustment to drought hazard is usually the work of both individuals, and government. The Saudi Arabian government has spent large sums of money to reduce impact of drought hazard.  相似文献   

4.
Saudi Arabia possesses numerous low-grade gold deposits and many occurrences are located in the Arabian Shield. Currently, there are five operating gold mines and major plans are underway to develop three gold mining regions in various parts of the shield. Because of the presence of numerous deposits and a significant amount of investments earmarked for the development of these deposits by the Saudi Government during the last few years, Saudi Arabia is expected to become one of the leading gold producers in the world. This paper starts with an introduction of gold mineralization and mining activities in the Arabian Shield in a historical perspective. This is followed by a brief review of geology and the geological importance of the Arabian Shield as a host for various types of gold deposits. The latter part of the paper discusses the statistical distribution of gold grades and its impact on cutoff grade variations on the gold reserves and their mining potentials. Finally, considering the lognormal distribution of gold grades and reduction in cutoff grades, it is demonstrated how some of the previously classified uneconomic resources can be gradually converted into mineable reserves with increasing proportions.  相似文献   

5.
Al Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ~2.3 km wide, ~250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.  相似文献   

6.
Amin  Ammar  Bankher  Khalid 《Natural Hazards》1997,16(1):57-63
The occurrence of land subsidence in the Kingdom Saudi Arabia is either natural or man-made. Natural land subsidence occurs due to the development of subterranean voids by a solution of host rocks in carbonate and evaporite terrains, over many areas of Saudi Arabia. Man-induced land subsidence is either due to the removal of groundwater in the agricultural areas or to wetting of unstable soils. Therefore, earth fissures and a lowering of the ground surface in unconsolidated sediments took place in alluvial plains and volcanic vent terrains. Unstable soils include Sabkha soils and loess sediments. These types of soils occur in coastal plains, desert areas and volcanic terrains. When this soil is wetted either during agricultural activities, waste disposal or even during a rain storm, subsidence takes place due to either the removal of salts from the Sabkha soil or the rearrangement of soil particles in loess sediments.  相似文献   

7.
In this paper, we present a case study of structural mapping by applying the 3D Euler method to the high-resolution aeromagnetic data that was collected in the west central Arabian Shield region and the coastal region of the central Red Sea in Saudi Arabia. We show the 3D Euler deconvolution algorithm and apply it to magnetic potential field data from the west Central Arabian Shield and the Central Red Sea. The solution obtained with 3D Euler deconvolution gives better-focused depth estimates, which are closer to the real position of sources; the results presented here can be used to constrain depth to active crustal structures (volcanisms) for the study area. The results indicated that the area was affected by sets of fault systems, which primarily trended in the NNW–SSE, NW–SE, EW, and NE–SW directions. Moreover, estimated Euler solution map from aeromagnetic data delineated also the boundaries of shallow, small, and confined magnetic bodies on the offshore section of the study area. These nearly exposed basement intrusions are most likely related to the Red Sea Rift and may be associated with structures higher up in the sedimentary section. These volcanic bodies are extended to the continental part (onshore) of the west central Arabian Shield, particularly beneath both sides of the Ad Damm fault zone. This extension verifies that the fault was largely contemporaneous with a major period during the extension of the Red Sea Basin. Moreover, according to the distribution of circular magmatic-source bodies (circular-shaped ring dikes) that resulted from this study, we can state that the clustering of most earthquakes along this fault may most likely be attributed to the active mantle upwelling (volcanic earthquakes), which are ultimately related to volcanic processes. Furthermore, the oceanic crustal structures near and in the Red Sea offshore regions were also estimated and discussed according to the ophiolite occurrences and further opening of the Red Sea. Our results are largely comparable with studies of previous crustal sections, which were performed along the Red Sea Rift and the Arabian Shield. As a result, the areas above these anomalies are highly recommended for further geothermal study. This example illustrates that high-resolution aeromagnetic surveys can greatly help delineating the subsurface active structures in the west central Arabian Shield and the middle coastal region of the Red Sea of Saudi Arabia.  相似文献   

8.
Sand and dust storms are causing hazards and problems in aviation as well as the dangers and distresses they cause on living things. The low meteorological visibility, the presence of strong winds with gust, and the transport of dust and sand particles by the wind are dangerous on landing and departure of aircrafts, and even on planes that are parked. The main aim of the study is to examine the meteorological conditions causing the dust storm that took place in the Arabian Peninsula on February 28, 2009, and to determine the source of dust caused dust storm, sand storm, blown sand, and blown dust at the airports. Within the scope of the study, aviation routine weather report (METAR) and aviation selected special weather report (SPECI) reports have been assessed at many airports over Arabian Peninsula (AP), the northern part of the AP and North Africa. As model outputs; NCEP–DOE Reanalysis 2 data, BSC–DREAM8B, and HYSPLIT model were used. In the satellite images; METEOSAT MSG dust RGB images, MODIS, and Kalpana-1 data were used. According to obtained results, dust storms were detected in Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates (UAE). At Al-Ahsa Airport in Saudi Arabia, the lowest visibility measured on February 28, 2009, dropping to 200 m, which was dominated by blowing sand. The source region of the dust observed at Dubai Airport in UAE is the eastern regions of the Rub’al Khali Desert located between Saudi Arabia, Oman, and UAE.  相似文献   

9.
The Buenos Aires (Argentina) and Venice (Italy) coastlands have experienced significant saltwater contamination of the phreatic aquifer, coastal erosion, hydrodynamic changes and relative sea level rise processes due to natural and man-induced factors. These factors expose coastal areas to morpho-hydro-geological hazards, such as soil desertification, frequency and degree of flooding, littoral erosion, and the silting of river mouths and channels. Man-made interventions and actions, such as beach mining, construction of coastal structures and exploitation of aquifers without an adequate knowledge of the hydrology setting and an adequate management program, worsen these natural hazards. Uncontrolled human activity induces environmental damage to the overall coastal plains. The coastal plains play an important role in the social/economic development of the two regions based on land use, such as agriculture, horticulture, breeding, and tourism, as well as industry. Results of investigations on saltwater contamination, sea level rise and morphological changes recently performed in these two coastal areas are presented here.  相似文献   

10.
In central Saudi Arabia, the combination of rock types and sedimentary bedding created a unique scarp landscape. The escarpments were formed during Late Miocene through Early Quaternary times. At present, cuesta formation and migration are restricted to the actual escarpments as a consequence of negligible sediment removal. The plains between the escarpments are sealed through periodically active fluvial processes and through eolian sedimentation. In this publication, the major escarpments of central Saudi Arabia are described. The interactions between tectonics, climate, and morphogenesis which created this unique landscape are reviewed.  相似文献   

11.
River runoff and atmospheric fallout (dust and air particulate matter) are major input sources of natural and anthropogenic terrestrial organic and inorganic components to the Arabian seas. In this study, we report on the various lipid tracer compounds that might be transported to the Arabian Gulf by rivers, dust, and air particulate matter. These are based on geochemical analysis of sediment, dust, and particulate samples collected from Iraq, Kuwait, and Saudi Arabia. The samples were extracted with a dichloromethane/methanol mixture and analyzed by gas chromatography-mass spectrometry. The extractable organic compounds (lipids) in the samples include n-alkanes, n-alkanoic acids, n-alkanols, methyl n-alkanoates, steroids, triterpenoids, carbohydrates, and petroleum hydrocarbons. The steroids and triterpenoids were major components in river and wetland samples. The major sources of these lipids were from natural vegetation, microbial (plankton and bacteria) residues in the sediments, sand, and soils, with some contribution from anthropogenic sources. Accordingly, these sources could be major inputs to the Arabian seas besides the autochthonous marine products. Future studies of the organic and inorganic biogeochemistry on river, dust, and coastal areas are needed to characterize the various regional sources, transformation, and diagenetic processes of the organic matter en route to the marine environment.  相似文献   

12.
The city of Jazan is situated on the eastern flank of the Read Sea and considered as one of the fastest growing cities in the Kingdom of Saudi Arabia. This zone attracts a lot of investors for various development projects. Recently, many new projects have been implemented and constructed in this region including new urban areas, infrastructures, and industrial projects. However, historically this area has been challenged from different types of geological hazards. These geological hazards are catastrophic events that can cause human injury, loss of life, and economic devastation. The current study is aimed at evaluating the different types of geological hazards in Jazan city. This study is based on interpretation of satellite data such as LANDSAT and QuickBird images, existing geological maps, and physiographical characteristics with the help of field and laboratory analyses. The results of the analysis indicate that there exist various types of geological hazards in the study area mostly related to the natural factors which include (1) Sabkha soil; (2) Salt dome; (3) Loess soil; and (4) Sand dune/drift. Further, the findings of this study revealed that, most of these geological hazards have a severe impact on the ongoing development activities in Jazan area.  相似文献   

13.
Aeromagnetic data covering an area of about 40,000 km2 at the west central Arabian Shield, Saudi Arabia has been collected and interpreted to provide structural map of the area. A number of normalized derivatives were used to help interpret the signature of magnetic data so that weak and small amplitude anomalies can be amplified relative to the stronger and larger amplitude anomalies. The interpretations obtained from these geophysical techniques of the field data demonstrated a strong correlation between magnetic anomalies and mapped subsurface geology. Based upon the variation in magnetic lineaments, shape amplitude, and trend structural map of the west central Arabian Shield on Saudi Arabia were obtained.  相似文献   

14.
This paper summarizes the negative effects on geological environment caused by groundwater exploitation and its distribution. There are seven main types of the geological environment negative effects, which are generally as follows:(1) Constant decrease of groundwater level is mainly distributed in China(East Asia), India(South Asia), Tajikistan(Central Asia) and Saudi Arabia(West Asia);(2) land subsidence occurs mainly in eastern plains of East Asia and west Siberian Plain of North Asia;(3) seawater intrusion occurs mainly in China, Japan and South Korea in East Asia, Philippines and Indonesia in Southeast Asia, the Indian coastal areas in South Asia;(4) groundwater level decline caused by groundwater exploitation in oil fields;(5) mining collapse is mainly in 50° to 70° north latitude band;(6) the total area of karst collapse in China of East Asia is as much as 197.05 km~2; and(7) ground fracture is mainly distributed in the North China Plain, Fenwei Plain and the Yangtze River Delta. Asia can be divided into 6 zones in terms of the geological environment negative effect caused by groundwater exploitation. According to analysis, with the increasing intensity of human activities, geological environment issues become more and more serious, therefore it is vital to control the human activities within the scope of 5× 10~5 people/km~2 to 9.9× 10~5 people/km~2 for the effective control of the size of the affected area by geological environment problems.  相似文献   

15.
The Kas Formation in SE Turkey was deposited as part of the Permian sequence on the northern margin of the Arabian Plate. Its stratigraphic relationship to time‐equivalent strata of the Arabian Plate was mentioned briefly in previous studies, but has not been elaborated and illustrated in detail. This biostratigraphic review of existing palaeontological data has improved the accuracy of age interpretation for the Kas Formation, and the relationship of its excellent palynological record to the international Permian chronostratigraphic units. As a result, this study has identified a number of key palynological species from the Kas Formation, which occur as well as in the ‘Basal Khuff Clastics’ of Saudi Arabia and in the ‘Khuff transition section’ of Oman. All these units have approximately the same age: Wordian to early Capitanian, based on ‘age control’ provided by Foraminifera. This study also demonstrates that, by using key palynological taxa, correlation of strata would be possible across the entire Arabian Plate in this narrow time range. Hence, the ‘Oman and Saudi Arabia Palynological Zone 6’ (OSPZ6) is applicable throughout the Arabian Plate area, including the northern regions of SE Turkey and Iraq. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Saudi Arabia is characterized as largely aseismic; however, the tectonic plate boundaries that surround it are very active. To improve characterization of seismicity and ground motion hazard, the Saudi Arabian Digital Seismic Network (SANDSN) was installed in 1998 and continues to be operated by the Saudi Geological Survey (SGS) and King Abdulaziz City for Science and Technology (KACST). This article describes research performed to improve seismic hazard parameters using earthquake location and magnitude calibration of the high-quality SANDSN data. The SANDSN consists of 38 seismic stations, 27 broadband, and 11 short period. All data are telemetered in real time to a central facility at KACST in Riyadh. The SANDSN stations show low background noise levels and have good signal detection capabilities; however, some stations show cultural noise at frequencies above 1.0 Hz. We assessed the SANDSN event location capabilities by comparing KACST locations with well-determined locations derived from ground truth or global observations. While a clear location bias exists when using the global average iasp91 earth model, the locations can be improved by using regional models optimized for different tectonic source regions. The article presents detailed analysis of some events and Dead Sea explosions where we found gross errors in estimated locations. New velocity models we calculated that should improve estimated locations of regional events in three specific regions include (1) Gulf of Aqabah—Dead Sea region, (2) Arabian Shield, and (3) Arabian Platform. Recently, these models were applied to the SANDSN to improve local and teleseismic event locations and to develop an accurate magnitude scale for Saudi Arabia. The Zagros Thrust presents the most seismic hazard to eastern Saudi Arabia because of the frequent occurrence of earthquakes. Although these events are 200 km or further from the Arabian coast, wave propagation through sedimentary structure of the Gulf causes long-duration ground motions for periods between 3 and 10 s. Such ground motions could excite response in large engineered structures (e.g., tall buildings and long bridges) such as was experienced after the November 22, 2005 Qeshm Island earthquake off the southern coast of Iran.  相似文献   

17.
Arabian Journal of Geosciences - Turabah area is located in the southwestern Arabian Shield of Saudi Arabia. The present study aims to shed light on the origin and mechanism of formation of the...  相似文献   

18.
The present study aims to shed light on the mechanism of formation of the Oligo-Miocene oolitic ironstones of Haddat Ash Sham area, Saudi Arabia. These ironstones are enclosed within the middle part of the Oligo-Miocene siliciclastic succession of the western part of the Arabian Shield, western Saudi Arabia. The ironstone beds were formed during marine incursion and creation of short-lived starved time periods of high organic matter activities, ferrous iron, and low clastic input. The depositional and diagenetic processes involved in the formation of Haddat Ash Sham ironstones are summarized here as follows: (1) the deposition of detrital components (i.e., amorphous iron-bearing clays admixed with silt and sand-sized quartz grains) and their distribution by the waves and current actions in areas of different water depths (bars and inter-bar areas); (2) the deposition of the iron-bearing clays in slightly reducing transgressive conditions (dysaerobic zone) led to the authigenesis of green marine chamositic clays of variable mineralogical and chemical compositions according to the predominated depositional environments; and (3) in the upper parts of the depositional cycles, the iron-bearing clays become admixed with detrital quartz grains which resulted in the formation of silty and sandy ironstones of low iron content. The diagenetic processes led to the oxidation of the green chamositic clays and formation of amorphous Fe-oxyhydroxides, ferrihydrites, goethite, and hematite. These iron mineral phases are related to each other and show progressive steps of transformation during the diagenetic processes. The iron ooids represent in situ formed irregular domains formed during the diagenetic crystallization and dehydration of the amorphous iron oxyhdroxides resulted from the diagenetic oxidation of green chamositic clays. This is supported by the absence of detrital cores of the iron ooids, the gradational contact between the iron ooids and the enclosing matrix and also by the presence of many ooids of unclear and ill-defined internal structure.  相似文献   

19.
Interpretation of a long-range seismic refraction line in Saudi Arabia has shown that beneath the Arabian Shield velocity generally increases with depth, from about 6 km s−1 at the surface to about 7 km s−1 at the top of the crust-mantle transition zone. The base of this transition zone (Moho) occurs at 37–44 km in depth. Intracrustal discontinuities can also be recognized, the most important being in the 10–20 km-depth range and separating the upper from the lower crust. Laterally, the variations in the intracrustal discontinuities and the total crustal thickness can be correlated with previously defined tectonic regions. Beneath the Red Sea shelf and coastal plain the crust, including 4 km of sediments, is only 15–17.5 km thick. With the aid of both seismic and gravity data an abrupt, steeply dipping transition from the crust of the Red Sea shelf and coastal plain to that of the Arabian Shield has been derived. With a jump of more than 20 km in Moho depth, this appears to be the major discontinuity between the Red Sea depression and the Arabian continental shield.  相似文献   

20.
Karst Hazard Assessment of Eastern Saudi Arabia   总被引:1,自引:0,他引:1  
Karst phenomena exist in areas in the eastern part of Saudi Arabia, forming solution features such as sinkholes, collapsed dolines and solution caverns, as a result of the chemical leaching of the carbonate and evaporite formations by percolating water. The instability of these karst phenomena could produce land subsidence problems. This paper reviews the geology of documented karstic rock units in Saudi Arabia and proposes a simple engineering classification of the solution features characteristic of limestone. Two case histories in the Dhahran area, eastern Saudi Arabia, will be used as examples for the application of a modified engineering classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号