首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Landslide-related factors were extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, and integrated techniques were developed, applied, and verified for the analysis of landslide susceptibility in Boun, Korea, using a geographic information system (GIS). Digital elevation model (DEM), lineament, normalized difference vegetation index (NDVI), and land-cover factors were extracted from the ASTER images for analysis. Slope, aspect, and curvature were calculated from a DEM topographic database. Using the constructed spatial database, the relationships between the detected landslide locations and six related factors were identified and quantified using frequency ratio (FR), logistic regression (LR), and artificial neural network (ANN) models. These relationships were used as factor ratings in an overlay analysis to create landslide susceptibility indices and maps. Three landslide susceptibility maps were then combined and applied as new input factors in the FR, LR, and ANN models to make improved susceptibility maps. All of the susceptibility maps were verified by comparison with known landslide locations not used for training the models. The combined landslide susceptibility maps created using three landslide-related input factors showed improved accuracy (87.00% in FR, 88.21% in LR, and 86.51% in ANN models) compared to the individual landslide susceptibility maps (84.34% in FR, 85.40% in LR, and 74.29% in ANN models) generated using the six factors from the ASTER images.  相似文献   

2.
For landslide susceptibility mapping, this study applied, verified and compared the Bayesian probability model, the weights-of-evidence to Panaon Island, Philippines, using a geographic information system. Landslide locations were identified in the study area from the interpretation of aerial photographs and field surveys, and a spatial database was extracted from SRTM (Shuttle Radar Topographic Mission) DEM (Digital Elevation Model) imagery, aerial photograph, topographic map, and geological map. The factors that influence landslide occurrence, such as slope, aspect, curvature, topographic wetness index and stream power index of topography, were calculated from SRTM imagery. Distance from drainage was extracted from topographic database. Lithology and distance from fault were extracted and calculated from geological database. Terrain mapping unit was classified from aerial photographs. The spatial association between the factors and the landslides was calculated as the contrast values, W + and W using the weights-of-evidence model. Tests of conditional independence were performed for the selection of the factors, allowing the large number of combinations of factors to be analyzed. For each factor rating, the contrast values, W + and W were overlaid for landslide susceptibility mapping. The results of the analysis showed that contrast rating (78.60%) for each factor’s multiclass had better accuracy of 5.90% than combinations of factor assigned to binary class with W + and W (72.70%).  相似文献   

3.
The purpose of this study was to develop techniques for landslide susceptibility using artificial neural networks and then to apply these to the selected study area at Janghung in Korea. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use. Thirteen landslide-related factors were extracted from the spatial database. These factors were then used with an artificial neural network to analyze landslide susceptibility. Each factor's weight was determined by the back-propagation training method. Five different training sets were applied to analyze and verify the effect of training. Then the landslide susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. Landslide locations were used to verify results of the landslide susceptibility maps and to compare them. The artificial neural network proved to be an effective tool for analyzing landslide susceptibility.  相似文献   

4.
Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia   总被引:15,自引:0,他引:15  
This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geographic Information System (GIS) and remote sensing data. Landslide locations in the study area were identified from interpretations of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide susceptibility was analyzed using landslide-occurrence factors employing the probability-frequency ratio model. The results of the analysis were verified using the landslide location data and compared with the probabilistic model. The accuracy observed was 80.03%. The qualitative landslide hazard analysis was carried out using the frequency ratio model through the map overlay analysis in GIS environment. The accuracy of hazard map was 86.41%. Further, risk analysis was done by studying the landslide hazard map and damageable objects at risk. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.  相似文献   

5.
The aim of this study was to validate an artificial neural network model at Youngin, Janghung, and Boeun, Korea, using the geographic information system (GIS). The factors that influence landslide occurrence, such as the slope, aspect, curvature, and geomorphology of topography, the type, material, drainage, and effective thickness of soil, the type, diameter, age, and density of forest, distance from lineament, and land cover were either calculated or extracted from the spatial database and Landsat TM satellite images. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. The landslide susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. For this purpose, weights for each study area were calculated by the artificial neural network model. Among the nine cases, the best accuracy (81.36%) was obtained in the case of the Boeun-based Janghung weight, whereas the Janghung-based Youngin weight showed the worst accuracy (71.72%).  相似文献   

6.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   

7.
Ensemble-based landslide susceptibility maps in Jinbu area, Korea   总被引:2,自引:2,他引:0  
Ensemble techniques were developed, applied and validated for the analysis of landslide susceptibility in Jinbu area, Korea using the geographic information system (GIS). Landslide-occurrence areas were detected in the study by interpreting aerial photographs and field survey data. Landslide locations were randomly selected in a 70/30 ratio for training and validation of the models, respectively. Topography, geology, soil and forest databases were also constructed. Maps relevant to landslide occurrence were assembled in a spatial database. Using the constructed spatial database, 17 landslide-related factors were extracted. The relationships between the detected landslide locations and the factors were identified and quantified by frequency ratio, weight of evidence, logistic regression and artificial neural network models and their ensemble models. The relationships were used as factor ratings in the overlay analysis to create landslide susceptibility indexes and maps. Then, the four landslide susceptibility maps were used as new input factors and integrated using the frequency ratio, weight of evidence, logistic regression and artificial neural network models as ensemble methods to make better susceptibility maps. All of the susceptibility maps were validated by comparison with known landslide locations that were not used directly in the analysis. As the result, the ensemble-based landslide susceptibility map that used the new landslide-related input factor maps showed better accuracy (87.11% in frequency ratio, 83.14% in weight of evidence, 87.79% in logistic regression and 84.54% in artificial neural network) than the individual landslide susceptibility maps (84.94% in frequency ratio, 82.82% in weight of evidence, 87.72% in logistic regression and 81.44% in artificial neural network). All accuracy assessments showed overall satisfactory agreement of more than 80%. The ensemble model was found to be more effective in terms of prediction accuracy than the individual model.  相似文献   

8.
Probabilistic landslide susceptibility and factor effect analysis   总被引:18,自引:0,他引:18  
The susceptibility of landslides and the effect of landslide-related factors at Penang in Malaysia using the geographic information system (GIS) and remote sensing data have been evaluated. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from Landsat Thermatic Mapper (TM) satellite images; and the vegetation index value from SPOT HRV (High-Resolution Visible) satellite images. Landslide hazardous areas were analyzed and mapped using the landslide-occurrence factors employing the probability–frequency ratio method using the all factors. To assess the effect of these factors, each factor was excluded from the analysis, and its effect verified using the landslide location data. As a result, all factors had relatively positive effects, except lithology, on the landslide susceptibility maps in the study area.  相似文献   

9.
A study of landslides in Youngin, Janghung and Boeun, Korea, using the geographic information system (GIS) validates a spatial probabilistic model for landslide susceptibility analysis. Locations were identified from aerial photographs, satellite images and field surveys. Topography, soil-type, forest-cover and land-cover maps were constructed from spatial data sets. Landslide occurrence is influenced by 13 factors, evidence for which was extracted from the database with the frequency ratio of each factor computed. Landslide susceptibility maps use frequency ratios derived not only from data for each area but also ratios, one from the probabilistic model, calculated from the other two areas (nine maps in all) as a cross-check of method validity. For validation, analytical results were compared in each study area with actual landslide locations: Boeun based on its frequency ratio showed the best accuracy (82.49%) whereas Janghung based on the Boeun frequency ratio showed the worst (69.53%).  相似文献   

10.
This study applied, tested and compared a probability model, a frequency ratio and statistical model, a logistic regression to Damre Romel area, Cambodia, using a geographic information system. For landslide susceptibility mapping, landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and a spatial database was constructed from topographic maps, geology and land cover. The factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from lineament were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite imagery. The relationship between the factors and the landslides was calculated using frequency ratio and logistic regression models. The relationships, frequency ratio and logistic regression coefficient were overlaid to make landslide susceptibility map. Then the landslide susceptibility map was compared with known landslide locations and tested. As the result, the frequency ratio model (86.97%) and the logistic regression (86.37%) had high and similar prediction accuracy. The landslide susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

11.
This paper presents landslide hazard analysis at Cameron area, Malaysia, using a geographic information system (GIS) and remote sensing data. Landslide locations were identified from interpretation of aerial photographs and field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence are topographic slope, topographic aspect, topographic curvature, and distance to rivers, all from the topographic database; lithology and distance to faults were taken from the geologic database; land cover from TM satellite image; the vegetation index value was taken from Landsat images; and precipitation distribution from meteorological data. Landslide hazard area was analyzed and mapped using the landslide occurrence factors by frequency ratio and bivariate logistic regression models. The results of the analysis were verified using the landslide location data and compared with the probabilistic models. The validation results showed that the frequency ratio model (accuracy is 89.25%) is better in prediction of landslide than bivariate logistic regression (accuracy is 85.73%) model.  相似文献   

12.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

13.
The aim of this study was to apply and to verify the use of fuzzy logic to landslide susceptibility mapping in the Gangneung area, Korea, using a geographic information system (GIS). For this aim, in the study, a data-derived model (frequency ratio) and a knowledge-derived model (fuzzy operator) were combined. Landslide locations were identified by changing the detection technique of KOMPSAT-1 images and checked by field studies. For landslide susceptibility mapping, maps of the topography, lineaments, soil, forest, and land cover were extracted from the spatial data sets, and the eight factors influencing landslide occurrence were obtained from the database. Using the factors and the identified landslide, the fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership values for landslide susceptibility mapping. Finally, the produced map was verified by comparing with existing landslide locations for calculating prediction accuracy. Among the fuzzy operators, in the case in which the gamma operator (λ = 0.975) showed the best accuracy (84.68%) while the case in which the fuzzy or operator was applied showed the worst accuracy (66.50%).  相似文献   

14.
The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the resulting techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs and field survey data. A spatial database of the topography, soil type, timber cover, geology, and land cover was constructed and the landslide-related factors were extracted from the spatial database. Using these factors, the susceptibility to landslides was analyzed by artificial neural network methods. The results of the landslide susceptibility maps were compared and verified using known landslide locations at another area, Yongin, in Korea. A Geographic Information System (GIS) was used to analyze efficiently the vast amount of data and an artificial neural network turned out to be an effective tool to analyze the landslide susceptibility.  相似文献   

15.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

16.
The present study deals with the preparation of a landslide susceptibility map of the Balason River basin, Darjeeling Himalaya, using a logistic regression model based on Geographic Information System and Remote Sensing. The landslide inventory map was prepared with a total of 295 landslide locations extracted from various satellite images and intensive field survey. Topographical maps, satellite images, geological, geomorphological, soil, rainfall and seismic data were collected, processed and constructed into a spatial database in a GIS environment. The chosen landslide-conditioning factors were altitude, slope aspect, slope angle, slope curvature, geology, geomorphology, soil, land use/land cover, normalised differential vegetation index, drainage density, lineament number density, distance from lineament, distance to drainage, stream power index, topographic wetted index, rainfall and peak ground acceleration. The produced landslide susceptibility map satisfied the decision rules and ?2 Log likelihood, Cox &; Snell R-Square and Nagelkerke R-Square values proved that all the independent variables were statistically significant. The receiver operating characteristic curve showed that the prediction accuracy of the landslide probability map was 96.10%. The proposed LR method can be used in other hazard/disaster studies and decision-making.  相似文献   

17.
用光学遥感数据和地理信息系统(GIS)分析了马来西亚Selangor地区的滑坡灾害。通过遥感图像解译和野外调查,在研究区内确定出滑坡发生区。通过GIS和图像处理,建立了一个集地形、地质和遥感图像等多种信息的空间数据库。滑坡发生的因素主要为:地形坡度、地形方位、地形曲率及与排水设备距离;岩性及与线性构造距离;TM图像解译得到的植被覆盖情况;Landsat图像解译得到的植被指数;降水量。通过建立人工神经网络模型对这些因素进行分析后得到滑坡灾害图:由反向传播训练方法确定每个因素的权重值,然后用该权重值计算出滑坡灾害指数,最后用GIS工具生成滑坡灾害图。用遥感解译和野外观测确定出的滑坡位置资料验证了滑坡灾害图,准确率为82.92%。结果表明推测的滑坡灾害图与滑坡实际发生区域足够吻合。  相似文献   

18.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

19.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

20.
Statistical analysis of landslide susceptibility at Yongin, Korea   总被引:35,自引:1,他引:35  
The aim of this study is to evaluate the susceptibility of landslides at Yongin, Korea, using a geographic information system (GIS). Landslide locations were identified in the Yongin area from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, timber cover, and geology. These data were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, age, diameter, and density of timber were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM satellite image. Landslide susceptibility was analyzed using the landslide occurrence factors by probability and logistic regression methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide location. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy. The results can be used to reduce associated hazards, and to plan land use and construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号