首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

2.
Abstract

Field-scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local-scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field-scale water balances because they have larger footprint areas than local soil moisture measurements. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5-m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D to estimate groundwater recharge. Variation in measured D was attributed to redirection of snowmelt infiltration and differences in lysimeter hydraulic properties caused by surface soil treatment. During the growing seasons of 2010, 2011 and 2012, ETwbLys (278, 289 and 269 mm, respectively) was in good agreement with ETEC (298, 301 and 335 mm). Annual recharge estimated from modelled D was 486, 624 and 613 mm for three calendar years 2010, 2011 and 2012, respectively. In summary, lysimeter D and ETEC can be integrated to estimate and model groundwater recharge.
Editor D. Koutsoyiannis  相似文献   

3.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

4.
X. Mo  S. Liu  Z. Lin  S. Wang  S. Hu 《水文科学杂志》2013,58(12):2163-2177
Abstract

Using satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp.  相似文献   

5.
Strategic planning of optimal water use requires an accurate assessment of actual evapotranspiration (ETa) to understand the environmental and hydrological processes of the world's largest contiguous irrigation networks, including the Indus Basin Irrigation System (IBIS) in Pakistan. The Surface Energy Balance System (SEBS) has been used successfully for accurate estimations of ETa in different river basins throughout the world. In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. Ground‐based ETa was calculated by the advection‐aridity method, from nine meteorological sites, and used to evaluate the intra‐annual seasonality in the hydrological year 2009–2010. In comparison with the advection‐aridity, SEBS computed daily ETa was slightly underestimated with a bias of ?0.15 mm day?1 during the kharif (wet; April–September) season, and it was overestimated with a bias of 0.23 mm day?1 in the rabi (dry; October–March) season. Monthly values of the ETa estimated by SEBS were significantly (P < 0.05) controlled by mean air temperature and rainfall, among other climatological variables (relative humidity, sunshine hours and wind speed). Because of the seasonal (kharif and rabi) differences in the water and energy budget in the huge canal command areas of the IBIS, ETa and rainfall were positively correlated in the kharif season and were negatively correlated during the rabi season. In addition, analysis of the evaporation process showed that mixed‐cropping and rice–wheat dominated areas had lower and higher water consumption rates, respectively, in comparison with other cropping systems in the basin. Basin areas under water stress were identified by means of spatial variations in the relative evapotranspiration, which had an average value of 0.59 and 0.42 during the kharif and the rabi seasons, respectively. The hydrological parameters used in this study provide useful information for understanding hydrological processes at different spatial and temporal scales. Results of this study further suggest that the SEBS is useful for evaluation of water resources in semi‐arid to arid regions over longer periods, if the data inputs are carefully handled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

7.
In order to maintain the scenic and eco-environmental values of a lake, we need to characterize its water interactions. Shahu Lake was used as a case study to show the interactions among replenishment water, lake water and groundwater in an arid region. Shahu Lake is located in the Ningxia Hui Autonomous Region of northwest China and has an area of 13.96 km2 and an average depth of 2.2 m. The groundwater modelling software MODFLOW was used. The analysis results show that hydraulic connectivity among replenishment water, lake water and groundwater is the crucial driving factor that affects the water level in Shahu Lake. The lake water level is highly sensitive to the volume of replenishment water. The groundwater is of great importance in balancing the water level in the lake and preventing it from drying up. It was determined that 13.8 × 106 m3/yr is the optimal volume of replenishment water for Shahu Lake in order to maintain the lake level at its normal state and also to make the best use of available water resources on a long-term basis. Understanding of the water interactions can promote effective management of water resources in Shahu Lake.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR D. Hughes  相似文献   

8.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

10.
Eddy correlation measurements within the Nile Delta allowed the determination of evapotranspiration (E) for seven crops (rice, maize, cotton, sugar beet, berseem, wheat and fava beans) using basin irrigation (BI), furrow irrigation (FI), BI with increased intervals (BIi), FI with increased intervals (FIi), strip irrigation (SI) and drip irrigation (DI). Total E values over the cropping season for rice (BI, BIi) were the highest (>600 mm), while those for sugar beet (DI), maize (SI and DI) and berseem (BIi) were the lowest (<250 mm). The differences were due to a combination of atmospheric demand, soil moisture, the presence of surface standing water, root depth, and the length and timing of the cropping season. The DI and SI methods had the advantage for water saving, while the FIi and BIi methods were effective for crops with shallow root lengths. Estimated annual E was 566–828 mm/year (water-saving irrigation) and 875–1225 mm/year (conventional irrigation).  相似文献   

11.
ABSTRACT

The impacts of future climate change on the agricultural water supply capacities of irrigation facilities in the Geum River basin (9645.5 km2) of South Korea were investigated using an integrated modeling framework that included a water balance network model (MODSIM) and a watershed-scale hydrologic model (Soil and Water Assessment Tool, SWAT). The discharges and baseflows from upland drainage areas were estimated using SWAT, and the predicted flow was used to feed agricultural reservoirs and multipurpose dams in subwatersheds. Using a split sampling method, we calibrated the daily streamflows and dam inflows at three locations using data from 6 years, including 3 years of calibration data (2005–2007) followed by 3 years of validation data (2008–2010). In the MODSIM model, the entire basin was divided into 14 subwatersheds in which various agricultural irrigation facilities such as agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were defined as a network of hydraulic structures within each subwatershed. These hydraulic networks between subwatersheds were inter-connected to allow watershed-scale analysis and were further connected to municipal and industrial water supplies under various hydrologic conditions. Projected climate data from the HadGEM3-RA RCP 4.5 and 8.5 scenarios for the period of 2006–2099 were imported to SWAT to calculate the water yield, and the output was transferred to MODSIM in the form of time-series boundary conditions. The maximum shortage rate of agricultural water was estimated as 38.2% for the 2040s and 2080s under the RCP 4.5 scenario but was lower under the RCP 8.5 scenario (21.3% in the 2040s and 22.1% in the 2080s). Under the RCP 4.5 scenario, the projected shortage rate was higher than that during the measured baseline period (1982–2011) of 25.6% and the RCP historical period (1982–2005) of 30.1%. The future elevated drought levels are primarily attributed to the increasingly concentrated rainfall distribution throughout the year under a monsoonal climate, as projected by the IPCC climate scenarios.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

12.
To assess the response of groundwater to artificial recharge through floodwater spreading (FWS) a combination approach of water table fluctuations and water budget was used. In this process, water level data in six observation wells installed inside and around the site of the FWS systems together with the amount of rainfall and volume of floodwater diverted to the system were examined during the period 1993–2012. Specific yield was also determined based on measured soil hydraulic properties for three experimental wells hand drilled within the FWS systems. The observation wells located inside the FWS systems were less susceptible to drought and abstractions than the other wells in the area. The hydrograph of the wells inside the FWS showed a large disparity in rises (0.5–2.05 m) after the two major floods in 2004 and 2005 due to systems closure in 2004. The water budget calculated based on water table fluctuations for 2010/11 showed that the contribution of FWS systems to total recharge in the study area was about 57–61%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Kanae  相似文献   

13.
Water availability is the primary constraint on the improvement of food security in rural areas in northwestern Cambodia. A 4-year study was carried out in the upper Stung Sreng watershed to assess water resources. Four sub-watersheds with different land cover types, ranging in size from 1.5 to 185 km2, were monitored using dedicated weather stations and rain- and streamgauges. Geophysics and observation boreholes were used to characterize aquifers. Rainwater is mostly split into evapotranspiration (annual mean of 54% rainfall) and streamflow components (49%), because groundwater recharge is low (1%). Thus, rainwater and streamflow are the main sources for irrigation development. Groundwater can be used only in specific locations for low water-demand crops. A total of 186 household ponds and three village-scale dams were built and 31 wells were installed. The household pond was determined to be the best solution for irrigation development because of its simple management.
EDITOR A. Castellarin ASSOCIATE EDITOR M. Piniewski  相似文献   

14.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

15.
Sensitivity analysis is important in understanding the relationship between sunshine duration (SD) and reference evapotranspiration (ETref). This study was developed in the Lancang-Mekong River Basin using a non-dimensional relative sensitivity coefficient (SN) relating ETref to SD. The SN for January and July for each station were calculated. The results indicate that (a) the SD and SN change in similar ways, where January and July are selected as two representative time slices; (b) the spatial distributions of the long-term averaged SN for January and July are the reverse of each other; (c) the most abrupt changes in climate occur in the 1980s and the middle region is sensitive to climate change; and (d) periodicities of 2–4 and 14–16 years are detected in the basin generally. The significant increase of inter-decadal filter variance indicates changes in the long-term memory of the local climate system.
EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR not assigned  相似文献   

16.
Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0.
EDITOR M.C. Acreman

ASSOCIATE EDITOR J. Thompson  相似文献   

17.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.  相似文献   

19.
Reference evapotranspiration (ET 0 ) is a key parameter in hydrological and meteorological studies. In this study, the FAO Penman–Monteith equation was used to estimate ET 0 , and the change in ET 0 was investigated in China from 1960 to 2011. The results show that a change point around the year 1993 was detected for the annual ET 0 series by the Cramer’s test. For the national average, annual ET 0 decreased significantly (P < 0.001) by ?14.35 mm/decade from 1960 to 1992, while ET 0 increased significantly (P < 0.05) by 22.40 mm/decade from 1993 to 2011. A differential equation method was used to attribute the change in ET 0 to climate variables. The attribution results indicate that ET 0 was most sensitive to change in vapor pressure, followed by solar radiation, air temperature and wind speed. However, the effective impact of change in climate variable on ET 0 was the product of the sensitivity and the change rate of climate variable. During 1960–1992, the decrease in solar radiation was the main reason of the decrease in ET 0 in humid region, while decrease in wind speed was the dominant factor of decreases in ET 0 in arid region and semi-arid/semi-humid region of China. Decrease in solar radiation and/or wind speed offset the effect of increasing air temperature on ET 0 , and together led to the decrease in ET 0 from 1960 to 1992. Since 1993, the rapidly increasing air temperature was the dominant factor to the change in ET 0 in all the three regions of China, which led to the increase in ET 0 . Furthermore, the future change in ET 0 was calculated under IPCC SRES A1B and B1 scenarios with projections from three GCMs. The results showed that increasing air temperature would dominate the change in ET 0 and ET 0 would increase by 2.13–10.77, 4.42–16.21 and 8.67–21.27 % during 2020s, 2050s and 2080s compared with the average annual ET 0 during 1960–1990, respectively. The increases in ET 0 would lead to the increase in agriculture water consumption in the 21st century and may aggravate the water shortage in China.  相似文献   

20.
A system identification approach can be incorporated in groundwater time series analysis, revealing information concerning the local hydrogeological situation. The aim of this work was to analyse water table fluctuations in an outcrop area of the Guarani Aquifer System (GAS) in Brotas/SP, Brazil, using data from a groundwater monitoring network. The water table dynamic was modelled using continuous time series models that reference the hydrogeological system upon which they operate. The model’s climatological inputs of precipitation and evapotranspiration generate impulse response (IR) functions with parameters that can be related to the physical conditions concerning the hydrological processes involved. The interpretation of the model parameters from two sets of monitoring wells selected at different land-use sites is presented, exemplifying the effect of different water table depths and the distance to the nearest drainage location. Systematic trends of water table depths were also identified from model parameters at specific periods and related to plant development, crop harvest and land-use changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号