首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
鄱阳湖夏季水热通量特征及环境要素影响分析   总被引:2,自引:2,他引:0  
气候变化加速了全球水文循环过程,然而,气候变化如何影响水体蒸发及其水热通量交换仍然不清楚.基于涡度相关系统观测鄱阳湖水体水热通量过程,在小时和日尺度分析了水热通量的变化规律及其主要影响因子.研究表明,潜热通量日变化波动剧烈,大部分为正值,变化范围在-50~580 W/m2之间.而感热通量数值较小,变化范围在-50~50 W/m2之间.8月份潜热通量和感热通量均呈波动下降趋势,均值分别为167.4和15.9 W/m2.8月份日平均潜热通量和感热通量之和大于净辐射,这是由于这一时段储存在水体中的热量释放并补充潜热通量和感热通量.小时尺度上潜热通量日变化在相位上与净辐射无显著相关性,而与风速显著相关.在日尺度变化趋势上,8月份日平均潜热通量仍主要受到风速和水温的影响,感热通量则主要受到风速和饱和水汽压差的影响.  相似文献   

2.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

4.
In this study, a parameterization method based on Landsat‐7 Enhanced Thematic Mapper (ETM) data and field observations is presented and tested for deriving the regional land surface variables, vegetation variables and land surface heat fluxes over a heterogeneous landscape. As a case study, the method and two Landsat‐7 ETM images are applied to the Jiddah area of Saudi Arabia. The regional distribution maps of surface reflectance, normalized difference vegetation index, modified soil adjusted vegetation index (MSAVI), vegetation coverage, leaf area index, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux have been determined over the Jiddah area. The derived results have been validated by using the ‘ground truth’. The results show that the more reasonable regional distributions of land surface variables (surface reflectance, surface temperature), vegetation variables (MSAVI and vegetation coverage), net radiation, soil heat flux and sensible heat flux can be obtained by using the method proposed in this study. Further improvement of the method is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of small water bodies or lakes on the surface sensible and latent heat fluxes and the transport of heat and water vapour in the atmospheric boundary layer (ABL) over the Mackenzie River Basin (MRB) are studied from two cases, which occurred on 2 and 8 June 1999 during the warm season. The synoptic condition for the cases is representative of about 33% of the synoptic situation over the MRB. The two events are simulated using the Canadian mesoscale compressible community (MC2) model. A one‐way nesting grid approach is employed with the highest resolution of 100 m over a domain of 100 km2. Experiments were conducted with (LAKE) and without (NOLAKE) the presence of small water bodies, whose size distribution is obtained through an inversion algorithm using information of their linear dimension determined from aircraft measurement of surface temperature during MAGS (the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study) in 1999. The water bodies are assumed to be distributed randomly in space with a fractional area coverage of 10% over the MRB. The results show that, in the presence of lakes, the domain‐averaged surface sensible heat flux on 2 June 1999 (8 June 1999) decreases by 9·3% (6·6%). The surface latent heat flux is enhanced by 18·2% (81·5%). Low‐level temperature advection and the lake surface temperature affect the air–land/lake temperature contrast, which in turn controls the sensible heat flux. In the absence of lakes the surface wind speed impacts the latent heat flux, but in the presence of lakes the moisture availability and the atmospheric surface layer stability control the latent heat flux. The enhancement is smaller on 2 June 1999 as a result of a stable surface layer caused by the presence of colder lake temperatures. The domain‐averaged apparent heat source and moisture sink due to turbulent transports were also computed. The results show that, when lakes are present, heating and drying occur in the lowest 100 m from the surface. Above 100 m and within the ABL, there was apparent cooling. However, the apparent moistening profiles reveal that lakes tend to moisten the ABL through transfer of moisture from the lowest 50–100 m layer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Non‐closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy‐covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30‐min data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements from weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30‐min flux integration interval. Both methods lead to an improved agreement of the eddy‐covariance based fluxes with the independent lysimeter estimates and the physically based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half‐hour time interval. The vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterisation of the energy balance residual.  相似文献   

8.
This paper presents measurements of the energy balance (radiation, sensible heat flux, evaporation) from a sub‐arctic hillside in northern Finland for a summer season. Comparisons are also made with a nearby wetland site. The hillslope measurements show an equal partition of the radiant energy into sensible and latent heat flux. The evaporative ratio of just over one half was remarkably constant throughout the season, despite very large day‐to‐day and diurnal variations of temperature, humidity deficit and radiation input. This conservative behaviour of the evaporation was caused by a strong rise in effective surface resistance to evaporation with increasing vapour pressure deficit. This suggests a strong physiological control on the evaporation, with stomata closing at times of high evaporative demand. There was no obvious impact of soil‐water stress on the evaporation. However, a comparison with the evaporation measured at a nearby mire site in 1997 suggests that the mire has a significantly lower surface resistance, even when the impact of a significantly lower humidity deficit in the earlier year is taken into account. The measurements are used to test, off‐line, the performance of MOSES (Meteorological Office Surface Exchange Scheme), a simple, but comprehensive, land surface model. The sensitivity of the energy exchanges to the thermal properties of the top soil layer (a surrogate for the upper soil/vegetation layer) is investigated with the use of the model. It is found that the evaporation is insensitive to these properties; they do, however, influence the partition of energy between the sensible heat flux and the ground heat flux (and hence the soil temperatures). It is suggested that the model needs to represent the thermal properties of the canopy more realistically. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.  相似文献   

10.
利用2002年4月24日至6月20日在西沙海区进行的第三次南海海-气通量观测试验资料,采用涡相关法和TOGA COARE25b版本通量计算方案,计算了西南季风爆发前后海洋-大气间的通量交换,讨论了辐射、动量、感热通量、潜热通量、海洋热量净收支的时间变化特征及其与气象要素变化的关系.结果表明:西南季风爆发前后,太阳短波辐射、海面净辐射、潜热通量和海洋热量净收支变化特别强烈;通量变化受不同环境要素的影响:感热通量与海-气温差呈正相关关系,与气温呈明显的负相关关系.潜热通量与风速、海-气温差及海面水温均有正相关关系,其中与风速的关系最密切.动量通量(τ)主要随风速变化,它与风速(V)的关系可以表示为τ=000185V2-000559V+001248.  相似文献   

11.
荆思佳  肖薇  王伟  刘强  张圳  胡诚  李旭辉 《湖泊科学》2019,31(6):1698-1712
湖泊模型为数值天气预报模型提供热量通量、水汽通量和动量通量等下边界条件,但是不同时间尺度上湖泊水热通量变化的控制因子不同,因此有必要对湖泊模型进行多时间尺度上的离线评估.本文利用2012-2016年太湖中尺度通量网避风港站的气象资料和辐射数据驱动CLM4-LISSS模型(Community Land Model version 4-Lake,Ice,Snow and Sediment Simulator),并与涡度相关观测(Eddy Covariance,EC)结果进行对比,以年平均潜热通量模拟结果最佳为目标调整了模式中的消光系数、粗糙度长度方案,研究了该模型从半小时到年尺度上对湖表温度和水热通量的模拟性能.结果表明:模型对湖表温度的模拟在各时间尺度上均比较理想,但是模拟的日较差较小;从半小时到年尺度上潜热通量的变化趋势都能被很好地模拟出来,但在季节尺度上,潜热通量的模拟出现了秋冬季偏高、春夏季偏低的情况,季节变化模拟不准确.湖表温度和潜热通量模拟偏差的原因可能是消光系数的参数化方案.相比之下,感热通量尽管年际变化趋势的模拟值与观测值一致,但是从半小时到年尺度均被高估.特别地,冷锋过境期间,模型能较好地模拟出潜热通量和感热通量的变化趋势,但对于高风速条件下的感热通量模拟效果不佳.本文的研究结果能为湖泊模式的应用与发展提供有用信息.  相似文献   

12.
Playa systems are driven by evaporation processes, yet the mechanisms by which evaporation occurs through playa salt crusts are still poorly understood. In this study we examine playa evaporation as it relates to land surface energy fluxes, salt crust characteristics, groundwater and climate at the Salar de Atacama, a 3000 km2 playa in northern Chile containing a uniquely broad range of salt crust types. Land surface energy budget measurements were taken at eight representative sites on this playa during winter (August 2001) and summer (January 2002) seasons. Measured values of net all-wave radiation were highest at vegetated and rough halite crust sites and lowest over smooth, highly reflective salt crusts. Over most of the Salar de Atacama, net radiation was dissipated by means of soil and sensible heat fluxes. Dry salt crusts tended to heat and cool very quickly, whereas soil heating and cooling occurred more gradually at wetter vegetated sites. Sensible heating was strongly linked to wind patterns, with highest sensible heat fluxes occurring on summer days with strong afternoon winds. Very little energy available at the land surface was used to evaporate water. Eddy covariance measurements could only constrain evaporation rates to within 0.1 mm d−1, and some measured evaporation rates were less than this margin of uncertainty. Evaporation rates ranged from 0.1 to 1.1 mm d−1 in smooth salt crusts around the margin of the salar and from 0.4 to 2.8 mm d−1 in vegetated areas. No evaporation was detected from the rugged halite salt crust that covers the interior of the salar, though the depth to groundwater is less than 1 m in this area. These crusts therefore represent a previously unrecorded end member condition in which the salt crusts form a practically impermeable barrier to evaporation.  相似文献   

13.
The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index(NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer(EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission(SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional variational data assimilation system(3DVar) module in the Weather Research and Forecasting(WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal characteristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case(Case 2) compared with control case(Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case(Case 3) and the combined case(Case 4). The simulated temporal variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated precipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of arid lands, as well as research on the formation and stability of climate over semiarid areas.  相似文献   

14.
We measured the fluxes of sensible and latent heat between a low‐land dipterocarp forest in Peninsular Malaysia and the atmosphere. No clear seasonal or interannual changes in latent heat flux were found from 2003 to 2005, while sensible heat flux sometimes fluctuated depending on the fluctuation of incoming radiation between wet and dry seasons. The evapotranspiration rates averaged for the period between 2003 and 2005 were 2·77 and 3·61 mm day?1 using eddy covariance data without and with an energy balance correction, respectively. Average precipitation was 4·74 mm day?1. Midday surface conductance decreased with an increasing atmospheric water vapour pressure deficit and thus restricted the excess water loss on sunny days in the dry season. However, the relationship between the surface conductance and vapour pressure deficit did not significantly decline with an increase in volumetric soil water content even during a period of extremely low rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This paper uses detailed hydrometeorological data to evaluate the influence of channel bed processes on the river energy budget at an experimental site on the regulated River Blithe, Staffordshire, UK. Results from a pilot study are presented for eight days during July, September, October and November 1994. Total energy gains were dominated by net short-wave radiation (97·60%) with significant contributions from sensible heat exchange and friction (1·17 and 1·06%, respectively) and minor additions from condensation and bed conduction (0·16 and 0·01%, respectively). Net long-wave radiation, evaporation, conduction into the river bed, sensible heat transfer and the energy advected during evaporation accounted for 53·98, 23·56, 16·27, 5·25 and 0·94% of the total heat losses. On average, over 82% of the total energy transfers occurred at the air–water interface. Approximately 15% of the total energy exchanges occurred at the channel bed, but maximum daily heat exchanges accounted for up to 24% of the daily total energy transfer. The amount of short-wave radiation attenuated in the water column, and values measured at the channel bed varied considerably from those calculated using a standard coefficient. Values of bed conduction varied in response to different vertical thermal profiles in the channel bed, reflecting the variable influence of sedimentology and groundwater flux. Fluctuations in levels of periphyton and macrophyte cover were also shown to have a significant effect on energy fluxes at the channel bed. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
基于大气边界层动量、感热和水汽通量的基本方程,定量地计算了波动海面的动量、感热和水汽通量。首先,应用Prandtl的混合长概念,推导出贴海面大气层中风速、位温和比湿的涡动交换率及其贴海面层厚度,并且证明了波面上位温或比湿贴海面层厚度与速度贴海面层厚度的比值,和平面上的相应比值完全相等。随后,利用空气动力学理论讨论了贴海面动量、感热和水汽输送的参数化问题。最后,对现有五种理论模式进行了比较说明。  相似文献   

18.
Jing Wang  Qiang Yu  Xuhui Lee 《水文研究》2007,21(18):2474-2492
Understanding the exchange processes of energy and carbon dioxide (CO2) in the soil–vegetation–atmosphere system is important for assessing the role of the terrestrial ecosystem in the global water and carbon cycle and in climate change. We present a soil–vegetation–atmosphere integrated model (ChinaAgrosys) for simulating energy, water and CO2 fluxes, crop growth and development, with ample supply of nutrients and in the absence of pests, diseases and weed damage. Furthermore, we test the hypotheses of whether there is any significant difference between simulations over different time steps. CO2, water and heat fluxes were estimated by the improving parameterization method of the coupled photosynthesis–stomatal conductance–transpiration model. Soil water evaporation and plant transpiration were calculated using a multilayer water and heat‐transfer model. Field experiments were conducted in the Yucheng Integrated Agricultural Experimental Station on the North China Plain. Daily weather and crop growth variables were observed during 1998–2001, and hourly weather variables and water and heat fluxes were measured using the eddy covariance method during 2002–2003. The results showed that the model could effectively simulate diurnal and seasonal changes of net radiation, sensible and latent heat flux, soil heat flux and CO2 fluxes. The processes of evapotranspiration, soil temperature and leaf area index agree well with the measured values. Midday depression of canopy photosynthesis could be simulated by assessing the diurnal change in canopy water potential. Moreover, the comparisons of simulated daily evapotranspiration and net ecosystem exchange (NEE) under different time steps indicated that time steps used by a model affect the simulated results. There is no significant difference between simulated evapotranspiration using the model under different time steps. However, simulated NEE produces large differences in the response to different time steps. Therefore, the accurate calculation of average absorbed photosynthetic active radiation is important for the scaling of the model from hourly steps to daily steps in simulating energy and CO2 flux exchanges between winter wheat and the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
High-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north–northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy–architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.  相似文献   

20.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号