首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 410 毫秒
1.
推导了板块的弹性运动方程.根据太平洋板块(PCFC)上空间大地测量的观测结果,建立了PCFC的弹性运动模型,该模型与板块实际运动状态的符合程度明显地优于刚体运动模型.研究表明:PCFC现今旋转的角速度比过去3Ma的平均值大0037°/Ma;在PCFC内部存在明显的水平形变,在15°S以北和2045°E以西地区存在一致的向西形变,北西与南西方向的形变速率分别为08~35 mm/a与10~34 mm/a;在板块的东南区存在一致的向东形变,北东与南东方向的形变速率分别为15~18 mm/a与28~91 mm/a.PCFC内部水平应变场的空间变化是有规律的,在PCFC的西北部,主压应变轴为NW-SE方向,主压应变率大于主张应变率;在PCFC的东南部,主压应变轴为NE-SW方向,主张应变率大于主压应变率;PCFC的东南边界是扩张边界,边界附近的主张应变率最大(平均为151×10-9/a),主张应变轴基本上与洋中脊的扩张方向一致;PCFC的西北边界是俯冲边界,边界附近的主压应变率最大(平均为075×10-9/a),主压应变轴基本上与太平洋板块的俯冲方向一致.  相似文献   

2.
堪察加地区现今地壳运动与变形特征研究   总被引:2,自引:1,他引:1       下载免费PDF全文
利用俄罗斯堪察加地区1995~2005年的GPS观测数据,研究了该区现今地壳水平运动速度场特征.在球坐标系中解算了各应变率分量,分析了应变率场的空间分布特征,并与地震学和地质学研究结果进行了综合对比分析.结果表明,堪察加半岛北部的微板块边界并不明显,堪察加南部测站运动速度大于中部和北部地区,愈靠近东部板块汇聚区,测站速度越大.从东海岸到西海岸,测站水平速度存在明显的梯度衰减特征,水平运动方向与太平洋板块向西北的俯冲方向基本一致.各应变率分量具有东部海岸大于中部和西海岸、从东至西呈梯度衰减的特点.堪察加大部分地区处于EW和NS向压缩状态,局部存在拉张.面应变率结果显示绝大部分为压缩区;刚性转动结果表明大部分地区表现为顺时针转动,北部地区和南端顺时针旋转性明显.东部有效应变率明显大于西部地区,东西向梯度衰减关系明显.主压应变率明显大于主张应变率,特别是在东海岸地区.主压应变率方向与中等以上地震的主压应力轴在水平方向的投影方向基本一致.地壳变形场在空间分布上的不一致性主要与太平洋板块在堪察加半岛东南侧的俯冲深度、俯冲方位角、俯冲倾角和俯冲带的耦合强度有关.  相似文献   

3.
用菲律宾海板块上7个站ITRF2000的速度建立了菲律宾海板块的整体旋转线性应变模型. 结果认为菲律宾海板块的现今运动是顺时针方向旋转,与NNR_NUVEL_1A估计的旋转方向一致,但与NNR_NUVE_1A估计的旋转极位置和旋转角速度有较大差别. 本文模型与Sella等建立的刚体运动模型相比能更精确地描述菲律宾海板块的现今构造运动与板内形变. 菲律宾海板块内部存在强烈的形变-应变场. 在板块上存在一致的向东形变,形变速率在中央构造线附近小,东、西边界附近大,南、北两端小,中部大,在Mariana弧上向东的形变速率达到484 mm/a. 板块上南北方向的形变,东、西部存在明显差别,东部的南北向形变速率很小,西部在Manila海沟附近南北向形变速率较大,北端向北的形变速率为113 mm/a,南端向南的形变速率为293 mm/a. 板块的中央构造线把板块的主应变场分为东、西两个区. 东区存在非常强烈的张应变,压应变则很弱. 主张应变为近东西方向,从中央构造线向东主张与主压应变率逐渐增加,板块东南边界附近(148°E,15°N)主张应变率最大为858×10-8/a. 在西区,存在很强的主压应变而主张应变则较弱,主压应变为NW-SE方向,主压与主张应变率呈现从中央构造向西逐渐增加的特征,在板块西北边界(122°E,23°N)附近,主压应变率最大为571×10-8/a. 菲律宾海板块主应变场的空间变化与板块内部及周围的构造背景密切相关,是构造应力场的反映.  相似文献   

4.
中国大陆现今应变场动态   总被引:4,自引:0,他引:4       下载免费PDF全文
根据2004年和2007年GPS复测资料,计算出中国大陆的水平主应变数据,显示出各亚板块的主压应变轴方向与震源机制解的P轴和用地质方法得到的主压应力轴基本一致,表明在区域上和长时期中,地壳的构造应力场是相对稳定的.中国大陆西部的青藏亚板块和新疆亚板块的主压应力轴,为南北向及北北东-南南西向,受欧亚板块和印度板块相互碰撞而产生的作用力的控制;东部的黑龙江亚板块和华北亚板块的主压应变轴,为北东东-南西西向,显示出受欧亚板块与北美板块、太平洋板块碰撞俯冲产生的作用力影响,同时也受青藏亚板块和新疆亚板块侧向作用力的影响;华南亚板块的主压应变轴,为北西西-南东东向,反映出受菲律滨海板块与欧亚板块碰撞产生的作用力影响,同时也受青藏亚板块侧向作用力的影响.通过比较2004-2007年与2001-2004年的主压应变轴方向,反映出两个时间段各亚板块的主压应力作用方向基本一致,只是主应力轴方向集中程度有一定差别.前后两个时间段不同单元的面应变率显示,压性变化为主的数量减少,张性变化为主的数量有所增多.   相似文献   

5.
根据近十多年来华北地区GPS网的观测资料,分别计算了邢台、渤海、海城和唐山4次Ms7级以上大地震震中区现今应变场的主应变参数。计算结果表明,由GPS观测得到的邢台、渤海、海城、唐山地震震中区的主压应变轴方向与震前震中及周围地区的主压应力轴方向是一致的或基本上是一致的,这说明震中区的局部应力场经过震后30~40年的调整,震中区局部的应力场已基本上与区域应力场趋于一致。当前,邢台地震区主压应变率很小为-0.352×10-9/yr,主张应变率较大为3.306×10-9/yr,张应变占绝对优势,地壳处于拉张状态;在渤海地震区,主压应变率为2.593×10-9/yr,比主张应变率(2.947×10-9/yr)略小一些,二者比较接近;在海城地震区,主压应变率为1.276×10-9/yr,小于主张应变率(2.940×10-9/yr),地壳以张应变为主;在唐山地震区,主压应变率为4.539×10-9/yr,大于主张应变率(3.477×10-9/yr),压应变占优势。  相似文献   

6.
俯冲带深部应力场的二维弹性有限元数值模拟   总被引:2,自引:1,他引:2  
基于一些简化的数值模型,根据弹性本构关系,用平面应变有限元方法计算了相变引起的体积变化、板块内部温度差、密度异常及边界力产生的应力场分布情况.数值模拟结果显示,热应力能够解释俯冲带深源地震的应力场方向特征,但解释不了深源地震的深度分布特征;有亚稳态橄榄石存在时密度异常所产生的应力场特征与地震观测结果所显示的应力场特征有所偏离;虽然橄榄石——尖晶石相变体积变化所产生的应力在橄榄石——尖晶石相变过渡区附近有最大值,其数值远远超过温度差和密度异常产生的应力场的最大剪应力数值,但在相变界面附近的区域,主压应力方向垂直于相变界面的方向,与地震观测结果所显示的主压应力的方向不一致.所以,不能用弹性模拟得出的俯冲带温度变化所产生的热应力、俯冲带密度变化所产生的应力、相变体积变化所产生的应力来对深源地震进行简单化的解释.   相似文献   

7.
汶川Ms8.0地震孕育发生的机制与动力学问题   总被引:13,自引:3,他引:10       下载免费PDF全文
2008年5月12日四川省汶川县发生了Ms8.0强烈地震.发震断层是龙门山断裂带的映秀-北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用足龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

8.
根据钻孔应变观测理论,利用巴仑台、库米什和小泉沟分量钻孔应变观测数据定量计算测区附近构造应变变化。结果显示,三个台站的最大-最小主应变、面应变和剪应变的应变速率相对恒定,主方向大体不变;巴仑台附近区域受张-压应力相互作用,主压应变方向为N22°W,库米什台附近区域受拉张应力作用,主张应变方向为N8°E;小泉沟台附近区域受压应力作用,主压应变方向约为N46°W;精河MS6.6地震前巴仑台和小泉沟的应变变化速率明显高于平均水平,均呈现在压缩背景下的应变加速变化异常,可以为应变资料同类异常的识别和判定提供参考。  相似文献   

9.
许多研究人员利用GPS测量的速度资料计算了地应变率场,但其结果差异较大. 本文将地质统计学中的Kriging方法引入到GPS观测的速度场研究中, 通过Kriging插值得到青藏高原及邻区均匀网格节点上的速度值,然后运用有限单元中形函数(Lagrange插值函数)的求导方法,计算每个网格单元积分点处的地应变率分量,从而获得青藏高原及邻区的地应变率场的分布. 计算结果显示,青藏高原主体处在南北向受挤压、东西向被拉张的应变状态之中,但高原东部地区则正好相反,即南北向拉张、东西向出现挤压. 青藏高原及邻区主应变率的方位与震源机制解中P轴、T轴的方向基本一致;最大主压应变率的高值区分布在喜马拉雅主边界冲断带及附近地区,高原内部出现主张应变率大于压应变率的现象,且高原内部处在拉张应变状态. 面膨胀率结果也表明,喜马拉雅山及附近地区为面收缩区,而高原内部其他地区主要为膨胀区;最大剪应变率分布清晰地显示出青藏高原周边的主要断裂带轮廓. 文中的应变率计算结果预示青藏高原及周边地区现今的地应变与较长期的地质活动之间有一定的继承关系.  相似文献   

10.
汶川MS8.0地震孕育发生的机制与动力学问题   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日四川省汶川县发生了MS8.0强烈地震.发震断层是龙门山断裂带的映秀—北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用是龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

11.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

12.
Current horizontal strain field in Chinese mainland derived from GPS data   总被引:3,自引:0,他引:3  
Introduction In the years when the reliable data could not be obtained and in the analysis of strain property and magnitude in history, the intensity, property and activity pattern of strain field were mainly inferred on the bases of geometric characters of surface traces and behaviors (especially the faults) as well as the characteristics of petrology (XIE, et al, 1993; Molnar, Tapponnier, 1975, 1977; Tapponnier, Molnar, 1977; FU, et al, 2000). However, they are the averaged results accumu…  相似文献   

13.
喜马拉雅构造带及其临近区域是印度板块与欧亚大陆板块挤压碰撞的前缘地带.本文利用GPS实测速度场与震源机制解数据分别计算了研究区域现今地壳岩石圈表面的GPS应变场及岩石圈内部的主应力分布,研究了印度板块持续挤压作用下板块边界带地壳岩石圈现今地壳形变的空间分布特征.结果显示,南北向的剧烈挤压变形与东西向的拉伸变形是现今青藏高原南缘地壳岩石圈的主要变形特征.其中南北向的地壳挤压变形主要集中在主前缘冲断带与雅鲁藏布江缝合带之间.东西方向上,南北走向的亚东—谷露断裂是区域地壳东西向伸展变形的重要分界断裂.75°E是研究区域地壳形变的另一条显著不连续边界,其西侧地壳主压应变强度低、方向弥散且最大主压应力方向一致性较差,而东侧地壳主压应变方向与主压应力方向以及地壳水平运动速度场方向均具有较好的一致性.布格重力异常的小波多尺度辨析结果显示该分界带与循喜马拉雅西构造结楔入欧亚大陆的印度板块密切相关.  相似文献   

14.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

15.
天山造山带构造环境复杂,活动断裂带和强震分布广泛,且主要分布于阿尔泰山、天山、西昆仑—帕米尔弧形构造带上,尤以天山地区最为集中.迄今为止,天山造山带地区的主要断裂带的活动特征与孕震应力场特征之间的动力学机理尚未有清晰的认识.本文以GPS等实际观测数据为约束,建立有限元数值模型,计算了研究区域地壳形变、应力/应变积累速率、弹性应变能密度以及库仑应力变化率等关键因素.模拟计算结果显示地表速度场与研究区域实际GPS观测值基本一致,且主要断裂带上弹性应变能密度分布与实际地震活动性也基本吻合,验证了数值模型和结果的可靠性.结合最新的观测和数值模拟结果分析发现,研究区的断层和地震活动性主要受控于近南北向的主压应力,与主要观测特征相一致.同时,帕米尔高原北部边界带—塔什库尔干断裂(TKF)、天山造山带南边界的东侧—迈丹断裂(MDF)、兴地断裂(XDF)库仑应力增大明显,在未来强震发生的可能性较高,应予密切关注.  相似文献   

16.
研究帕米尔高原的构造变形特征对于理解印度板块向北推挤过程中的应变分配方式以及应力转换模式具有重要的意义.本文利用区域GPS应变场、地震应变场与震源应力场分析帕米尔高原的构造形变特征.主要结论为:(1)该区域变形主要以NNW-SSE或近N-S向的挤压为主,在高原内部伴有明显的近ENE-WSW或E-W向拉张,应力方向在帕米尔高原与塔吉克盆地区域呈现逆时针旋转的趋势,而在塔里木盆地则显示几乎与帕米尔高原的一致的应力状态,这可能与两侧盆地块体的强度差异有关.(2)安德森断层参数A∅显示帕米尔高原北缘与西侧区域为逆断层应力状态,在高原内部为正断层应力状态,这与GPS应变的结果显示的应变主要集中在主帕米尔断裂与阿莱谷地附近而在高原内部应变较低是一致的,另外应力在喀喇昆仑断裂北段的方向基本平行于断层走向,以及断层北端较低的滑动速率,这说明了地壳挤压缩短可能是帕米尔高原主要的的构造变形特征,并不支持由于边界走滑断裂导致的应变分异或者块体挤出的模式.(3)综合考虑地震应变方向与SHmax从帕米尔北部NNW-SSE方向到天山北部的近N-S方向的转换,GPS应变方向在帕米尔高原两侧盆地都存在不同程度的旋转,应力场安德森参数A∅显示的应力状态以及SKS的结果显示的近ENE-WSW方向,我们认为印度板块向北推挤与天山造山带碰撞导致帕米尔高原不对称的径向逆冲是帕米尔高原现今构造变形的主要成因与构造模式.  相似文献   

17.
以京西北地区作为研究区域,采用应变参数方法解算定点地应变观测数据,将所得应变参数时间序列作为研究对象,利用该结果与研究区内同期小震震源机制解进行一致性分析,研究得出呈拉张性质的定点观测最大主应变方位与震源机制解最大拉张变形方向(T轴)水平投影具有良好的对应性,整体以NNW—NE向为主,且自西向东排布的测点最大主应变方位与震源机制解最大拉张变形方向均表现为逐渐东向偏移的趋势,与华北平原块体北部发生顺时针旋转活动的特征相吻合,结果进一步检验了地应变观测反映区域应变场信息的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号