首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
深海环境常有高压、极端温度、富含重金属、黑暗、寡营养等特点。生活在该种特殊环境中的生物可能演绎出不同机制适应此生境。囊螂科贝类是深海冷泉/热液区的优势物种,拟通过对来自冷泉/热液区囊螂科贝类铁蛋白进行环境选择压力分析,以期解析其适应深海特殊生境(高铁环境、高静水压)的机制。首先,通过本地比对的方式获得了囊螂蛤和其近缘种铁蛋白的核苷酸和氨基酸序列,其均有ferritin保守功能域和相应的保守位点。其中,囊螂蛤铁蛋白Cmfer-2、Cmagfer-3、Pofer-3属于M型铁蛋白,其他归属为H型铁蛋白。 Cmagfer-4和Pofer-4可初步判断为分泌型铁蛋白,而其他囊螂蛤铁蛋白与胞质型铁蛋白聚为一支。为了探索环境因素对深海贝类铁蛋白的影响,运用PAML软件对深浅海铁蛋白进行了选择压力分析。 结果显示总共鉴定到8个正选择位点,其后验概率大于95%。其中,在含有嗜压氨基酸的对应组中,约50%浅海位点置换为嗜压的氨基酸,进一步证明了17A、 55R、171S氨基酸置换是铁蛋白适应深海压力变化的一种策略。更进一步研究发现69 K→I/T/M和171 E/K→S由带电荷的极性氨基酸置换为不带电荷的氨基酸,并且大部分受到选择的位点位于蛋白的N端和C端,深海囊螂蛤铁蛋白可能通过特定氨基酸极性的转变和分布区域的改变来适应深海特殊环境。本文通过深浅海贝类铁蛋白的分析来为深海生物对极端环境的适应研究提供一些信息和见解。  相似文献   

2.
平端深海偏顶蛤(Gigantidasplatifrons)是南海台西南冷泉区的典型优势物种,鳃丝上皮细胞内共生大量甲烷氧化菌,通过甲烷有氧氧化合成有机物为共生体系提供物质能量,是平端深海偏顶蛤赖以生存的重要能量来源器官,溶酶体在共生体系的营养互作和稳态维持中可能发挥重要作用,本研究使用电镜技术观测了常压培养过程中(0d,30d,90d)平端深海偏顶蛤共生体系中共生菌和溶酶体的动态变化,通过鳃上皮含菌细胞超显微结构的变化研究常压培养对深海共生体系的影响,并探讨溶酶体在宿主—共生菌营养传递和共生菌群稳态维持中的关键作用。研究发现,在原位状态样品中(0d)共生菌和溶酶体呈极化分布,细胞结构完整清晰;蓄养30d后,含菌细胞出现明显破碎,共生菌数量大幅降低,溶酶体数量、范围和消化程度大幅增加,对细胞顶端的甲烷氧化菌进行分解;而90d后,共生菌在溶酶体的作用下消失殆尽,鳃部有明显细胞脱落后留下的坑洞,细胞呈现空泡状,无法明确区分各种细胞组分。上述结果展示了长期常压蓄养过程中鳃上皮含菌细胞中溶酶体与甲烷氧化菌的动态变化,推测当共生菌丢失后溶酶体也同步降低活跃度,平端深海偏顶蛤在共生互作中通过溶酶体主导消化和调控共生菌。  相似文献   

3.
贻贝隶属于软体动物门(Mollusca)、双壳纲(Bivalvia)、翼形亚纲(Pteriomorphia)、贻贝目(Mytilida)、贻贝超科(Mytiloidea),大约有400种贻贝分布在世界各地,可适应淡水、潮间带至深海多种生境。本实验以贻贝科6亚科12属28种中国沿海常见贻贝的28SrDNA为目的片段,构建系统发育进化树,运用最大似然法和贝叶斯推演法分析了贻贝科的系统发生,并追踪贻贝科物种系统演化历史。结果显示:贻贝亚科Mytilinae、偏顶蛤亚科Modiolinae、石蛏亚科Lithophaginae均非单系群。在属阶元,深海偏顶蛤属Bathymodiolus、贻贝属Mytilus和股贻贝属Perna为单系群。本研究发现应接受将原隔贻贝属Septifer分为Septifer属和Mytilisepta属的分类提议;应接受将原石蛏属Lithophaga中的膜石蛏亚属Leiosolenus提升至属的地位的分类提议。此外,短齿蛤属Brachidontes的单系性不被支持,刻缘短齿蛤Brachidontessetiger并未与短齿蛤属其他物种在系统发育树上聚拢,亲缘关系较远,为不同属物种,建议恢复刻缘短齿蛤原属名Volsella (Dunker, 1857)。  相似文献   

4.
平端深海偏顶蛤(Gigantidasplatifrons)是广泛分布于西太平洋深海热液和冷泉生态系统中的优势种和共有种,也是深海化能生态系统中重要的生境营造种。以南海F冷泉平端深海偏顶蛤为研究对象,基于贝壳日生长轮方法,分析了平端深海偏顶蛤的年龄与生长速率,建立了其年龄与贝壳壳长关系的生长方程。同时,结合获得的生长方程,分析了南海F冷泉采样点(119.285 6°E,22.115 4°N)平端深海偏顶蛤种群的年龄结构。研究结果表明,采样获得的平端深海偏顶蛤种群的最大壳长为11.4 cm,最大寿命为13.5龄。研究区域的贝壳长度分布集中在4~7 cm,占比60%;年龄分布集中在2~4龄,占比49.7%。相关研究结果为进一步开展平端深海偏顶蛤的生长研究提供了基础数据,有助于深入了解冷泉区域的种群动态变化规律。  相似文献   

5.
Bathymodiolus属贻贝是广泛分布于全球深海冷泉和热液生态系统的优势种,在深海化能生态系统的物质循环和能量流动中起着重要作用。本文以我国南海北部冷泉的主要优势种平端深海偏顶蛤(Bathymodiolus platifrons)为研究对象,采用常规生化测定方法,研究了其主要生化成分和氨基酸组成的特征,并就特定组织中主要生化成分的含量与生活在热液区的平端深海偏顶蛤和近岸的远东偏顶蛤(Modiolus kurilensis)进行了对比。结果表明,南海冷泉平端深海偏顶蛤软体部含水量84.28%,粗蛋白含量7.18%,粗脂肪含量1.23%,糖类含量2.75%,与已报道的深海贝类组成相近。虽然主要生化成分含量在3种贻贝的鳃、外套膜、闭壳肌和消化腺4个组织中总体差异不大,但是冷泉平端深海偏顶蛤和热液平端深海偏顶蛤的外套膜糖类含量(25.20%、30.66%)显著高于远东偏顶蛤(6.97%,P0.05),这表明平端深海偏顶蛤的主要储存物质为外套膜中的糖类。在氨基酸组成上,冷泉平端深海偏顶蛤鳃中氨基酸总量为44.55%(干质量),外套膜中为34.83%(干质量),其中必需氨基酸分别占比41.73%和40.52%,总体与其他贝类相似。然而,在平端深海偏顶蛤中,与渗透压调节相关的甘氨酸和与硫代谢相关的牛磺酸含量较高,这与其适应深海高盐度高硫化氢浓度的环境相关。综上所述,南海冷泉平端深海偏顶蛤在常规生化组分和氨基酸组成上与近岸常见双壳类具有一定差异,这些差异与其特殊生境的关系还需要更加深入的研究。  相似文献   

6.
海水双壳贝类的生物沉积及其生态效应   总被引:17,自引:2,他引:17       下载免费PDF全文
在沿岸自然环境 ,双壳贝类经常达到很高的丰度 ,在生态系统的物质循环和能量流动中起着重要作用。双壳贝类作为滤食性动物具有很强的滤水能力 ,如扇贝、贻贝、蛤和牡蛎的滤水率均可达到5L/(g·h) ;它们能够过滤大量细小的颗粒物质 ,包括浮游物、浮游藻类、微生物、贝类幼虫和中型浮游动物等 ,还包括来源于双壳贝类以及其它动物 (如鱼 )粪粒的碎屑 [1,2]。双壳贝类通过过滤大量的水体摄取浮游植物和有机颗粒 ,同化一部分有机质 ,其它则以粪的形式排出 ,进而影响生态系统的结构和功能。对于养殖生态系 ,目前的研究还比较少 ,但已…  相似文献   

7.
文蛤遗传标记研究进展   总被引:1,自引:0,他引:1  
文蛤(Meretrix meretrix),隶属于软体动物门(Mollousca)、双壳纲(Lamellibranchia)、异齿亚纲(Heterodonta)、帘蛤目(Veneroida)、帘蛤科(Veneridae),为广温、广盐性的滩涂埋栖型双壳贝类,是我国重要的海产经济种类,我国南北沿海均有分布,尤其在辽宁辽河口沿海、山东莱州湾沿海、江苏南部沿海、广西合浦沿海等资源最为丰富.  相似文献   

8.
尝尝西施舌     
海蛤的种类不少,在市井酒肆中常见的有文蛤(俗称沙白)、杂色蛤仔(俗称花蛤)等。这类海产品肉嫩味鲜,已广有口碑,但若说到西施舌,则比它们更胜一筹了。西施舌,属贝类双壳纲蛤蜊科。壳大而薄,略呈三角形,长通常八九厘米,壳顶在中央稍前,腹  相似文献   

9.
珊瑚礁是全球生物多样性最高的海洋生态系统之一,底栖贝类是该生态系统的重要组成类群。为了解北部湾涠洲岛珊瑚礁底栖贝类的群落现状及特征,于2015年秋季(10月)与2018年春季(5月)采用水肺潜水截线样条定量调查法对涠洲岛珊瑚礁区6个断面的底栖贝类进行了调查,并分析了物种组成、丰度、生物多样性指数等群落特征。综合两次调查结果显示涠洲岛珊瑚礁区共有底栖贝类128种,分别属于多板纲1科1属3种,腹足纲25科46属68种,双壳纲22科31属57种。优势种为斑顶拟舌骨牡蛎、粗衣蛤、刺荔枝螺、马蹄螺、杂色牙螺、青蚶、旗江珧、甲虫螺、蕾丝蟹守螺、珠母爱尔螺。2018年春季定量断面采集到的样品为2纲14科43种,各断面的丰度、生物量、多样性指数、物种丰度指数和均匀度指数均值分别为3.39个/m2、86.94 g/m2、3.31、3.50、0.37。通过对两年的调查数据比较,发现2015?2018年涠洲岛珊瑚礁区的贝类生物群落呈现良好演替发育趋势。南海珊瑚礁区贝类群落结构可能受到了人为干扰强度和纬度的双重影响。本研究全面掌握了涠洲岛珊瑚礁底栖贝类的种类、分布区及群落的结构与变化,可为该地区海洋生物资源开发利用、珊瑚礁保护和生态修复等工作提供数据支持。  相似文献   

10.
运用流式细胞仪测定了双壳纲8种贝类的细胞核DNA含量。结果显示,测定贝类的DNA含量分别为(pg):太平洋牡蛎,2.06±0.03;东方海笋,2.11±0.07;近江牡蛎,2.18±0.13;结蚶,2.59±0.10;青蚶,3.08±0.23;砂海螂,3.24±0.28;缢蛏,3.85±0.10;日本镜蛤,5.00±0.20。双因素方差分析表明,同种贝类个体间DNA含量的差异不显著(p>0.05),仅占总差异的0.12%;而种间差异极为显著(p<0.01),比例高达97.45%。本实验所测8种贝类的DNA含量与其进化地位间未呈现出明显的相关性。  相似文献   

11.
Vestimentiferan tubeworms acquire their symbionts through horizontal transmission from the surrounding environment. In the present study, we constructed a 16S rRNA gene clone library to investigate the phylogenetic relationship between diverse microbes in the sediment and symbiotic bacteria in the trophosome of the tubeworm, Lamellibrachia satsuma, from Kagoshima Bay, Japan. Two symbiotic bacterial phylotypes belonging to the classes γ- and ε-Proteobacteria were found from this tubeworm trophosome. They were very closely related to the symbionts of several other marine invertebrates. The most predominant bacteria in the sediment were ε-Proteobacteria. A broad diversity of bacteria belonged to non-proteobacterial phyla such as Planctomycetes, Acidobacteria, and Chloroflexi was observed. The presence of sulfur oxidizers (i.e., ε-Proteobacteria and γ-Proteobacteria) and sulfur reducers (i.e., δ-Proteobacteria) may play a significant role in the sulfur cycle in these habitats and provide multiple sources of nutrition to the cold-seep communities. Closely related clones of ε-Proteobacteria symbiont in the species level and of γ-Proteobacteria symbiont in the genus level were found in the surrounding sediment. The similarity of symbiont clones of L. satsuma with other symbionts and free-living bacteria suggests the possibility of opportunistic symbiosis in ε-Proteobacteria and the co-evolution of γ-Proteobacteria having occurred after symbiosis with the tubeworms.  相似文献   

12.
J. A. Ott    R. Novak    F. Schiemer    U .Hentschel    M. Nebelsick  M. Polz 《Marine Ecology》1991,12(3):261-279
Abstract. The Stilbonemutinue (marine free-living nematodes) arc remarkable for cctosymbiotic bacteria, which cover the greatest part of their body in a highly ordered and species specific pattern. Using SEM we describe the main types of symbiotic cover and give evidence for the role of the bacteria in the nutrition of their host on the basis of stable carbon isotope ratios. In experimental systems the worms migrated repeatedly across a sulfide gradient during 12 h when sulfide concentrations were low, but stayed above the sulfide maximum at high concentrations. The migration across the chemocline exposes the symbionts alternately to reduced sulfur compounds and oxygen; this constitutes an alternative strategy to the ventilation/circulation systems in symbiotic macrofauna from sulfidic habitats.  相似文献   

13.
深海被认为是地球上尚未被认识和开发的“最后疆域”,深海环境不仅可满足人类对未来资源的部分需求,还孕育出了独特的生态系统和特殊的生命过程。地球上绝大部分生态系统是利用光合作用来维持生命循环,而深海中存在着以化能合成为基础的生态系统。本文重点综述了国内外关于深海化能生态系统中大型生物多样性及其起源演化方面的研究进展,并对印太交汇区深海极端环境的生物多样性研究趋势和发展方向进行了展望。  相似文献   

14.
Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior ‘root’ region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment. We show that E. southwardae harbors abundant sulfur-oxidizing bacterial symbionts in its trophosome. Symbionts are able to fix inorganic carbon using the Calvin-Benson cycle, as reported in most other Siboglinidae, but can also use the reverse Tricarboxilic Acid Cycle. Surprisingly, the observed bacteria appear to be more closely related to symbionts of Escarpia and Lamellibrachia species from very distant sites located in the Gulf of Mexico and eastern Pacific, than to symbionts of a siboglinid occurring at a nearby methane seep site, only a few hundred km away from Regab. Then, by combining scanning electron microscopy and trace element (Mn, Fe, Sr, Zr) analyses of E. southwardae tube, we also show that two distinct oxidation fronts occur along the tube. The first one, near the posterior end of the tube, corresponds to the interface between oxic bottom waters and the underlying anoxic sediment. In contrast, the second redox front is located in the most anterior part of the tube, and could result from active oxygen uptake by the plume of the tubeworm. We speculate that intense oxygen consumption in this region could create favorable conditions for sulfate reduction by specialized bacteria associated with the plume, possibly leading to an additional source of dissolved sulfide that would further enhance the productivity of bacterial symbionts.  相似文献   

15.
菌藻相互作用是海洋生态学领域研究的重要方向之一.海洋微微型蓝藻(Marine picocyanobacteria)是遍布全球海洋的重要初级生产者,在全球碳循环和微食物网中发挥重要作用.原绿球藻属(Prochlorococcus)和聚球藻属(Synechococcus)是海洋微微型蓝藻最重要的两个类群.原位调查和培养实验...  相似文献   

16.
A giant 800-m-diameter pockmark named REGAB was discovered on the Gabon continental margin actively emitting methane at a water depth of 3200 m. The microbial diversity in sediments from four different assemblages of chemosynthetic organisms, Mytilidae, Vesicomyidae, Siboglinidae and a bacterial mat, was investigated using comparative 16S rRNA gene sequence analysis. Aggregates of anaerobic methanotrophic archaea (ANME-2) and bacteria of the Desulfosarcina/Desulfococcus cluster were found in all four chemosynthetic habitats. Fluorescence in situ hybridization targeting the ANME-2/Desulfosarcina/Desulfococcus aggregates showed their presence few centimeters (3–5 cm) below the surface of sediment. 16S rRNA gene sequences from all known marine ANME groups were detected in the pockmark sediments, as well as from both known bacterial partners. The archaeal diversity was limited to the ANME cluster for all investigated samples. The bacterial diversity included members of the Proteobacteria, Bacilliales, Cytophaga/Flavobacteria, Verrucomicrobia, JS1 and Actinobacteria clusters. Bacterial 16S rRNA gene sequences related to those of known sulphide-oxidizing symbionts were recovered from tissues of several invertebrates including vesicomyid clams and siboglinid tubeworms of REGAB.  相似文献   

17.
Coral bleaching, i.e. the loss of dinoflagellate symbionts from cnidarian hosts, is occurring globally at increasing rates, scales, and severity. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibit high mortality, reduced fecundity and productivity and increased susceptibility to disease. This decreased coral fitness leads to reef degradation and ultimately to the breakdown of the coral reef ecosystem. To date there has been little work describing the application of biomarkers to assess coral health. The most commonly applied biomarker is, in fact, the bleaching event itself. We are interested in developing early warning biomarkers that can detect coral stress before bleaching occurs. Recently, several genes that are likely to function in regulating interactions between cnidarians and their symbionts have been characterized, using the temperate sea anemone Anthopleura elegantissima as a model species. One "symbiosis gene" identified from the host genome, sym32, is expressed as a function of anemone symbiotic-state, where sym32 expression is higher in symbiotic cf. aposymbiotic (symbiont-free) anemones. Real-time quantitative RT-PCR suggested that the level of sym32 expression was correlated with the abundance of algae in the host. Furthermore, laboratory exposures of anemones to low levels of cadmium (0, 20, 100 microg(-1) CdCl2; 14 days), which caused no change in algal cell numbers, resulted in a down-regulation of sym32 compared to controls, indicating that sym32 expression may serve as a new sensitive early warning biomarker of cnidarian-algal symbiosis breakdown.  相似文献   

18.
Cold-seep environments and their associated symbiont-bearing megafaunal communities create islands of primary production for macro- and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area (730 m; 64°N), and the active, methane-venting Håkon Mosby Mud Volcano (HMMV) west of the Barents Sea (1280 m; 72°N). Based on sediment geochemistry and associated epifauna, three different habitat types were distinguished across the two regions: (1) reduced sediment with suboxic conditions, sometimes covered by bacterial mats, (2) sediment colonised by chemosynthetic, siboglinid tubeworms, and (3) sediment outside the influence of seepage and without a large chemosynthetic fauna. Meiofaunal communities varied strongly in terms of generic diversity and dominance among the different habitat types. Control sites and Siboglinidae polychaete fields both supported high nematode genus richness similar to normal deep-sea sediments, whereas the reduced sediments yielded a genus-poor nematode community dominated by one or two successful species. Meiofaunal densities in the different habitats were negatively correlated with macrobenthic densities. An extremely dense (>11,000 ind. 10 cm–2), mono-specific nematode population appeared to be restricted to the bacterial mats at HMMV. It consisted of a new cryptic species of the Halomonhystera disjuncta complex, which has been described from intertidal habitats in the North Sea. The reduced seep sediments at Nyegga did not yield H. disjuncta but were dominated by Terschellingia longicaudata, another cosmopolitan nematode species known to be abundant in organic-rich, oxygen-poor, shallow-water environments. These observations point to a past or recent connection between margins and shallow-water habitats.  相似文献   

19.
Three sectors of the south Barbados prism between 1000 and 2000 m depth were explored by the French submersible Nautile. Chemosynthesis-based benthic communities were discovered on several structures affected by diapirism, including mud volcanoes, domes and an anticlinal ridge. The communities are associated with the expulsion of methane-rich fluids which is a wide-spread process in the area. These communities are dominated by large bivalves and vestimentiferans which harbour chemoautotrophic symbiotic bacteria. The symbiotic bivalves include two species of Mytilidae and one of Vesicomyidae, with dominance of a methanotrophic mussel. Cartography of the benthic communities, interpretation of thermal measurements and observation of sedimentary patterns have been used to define the life habits of each of the three species of symbiotic bivalves. Each species has a characteristic preference for different conditions of edaphic and fluid flow: the dominant methanotrophic mussel appears to require high velocity vents and hard substratum. The vesicomyids and the other species of mussel are able to take up sulfide from the sediments, and so are associated with low seepages, but also require soft sediment. The three bivalve species are assumed successively to colonize the top of a diapiric ridge, in a succession related to the temporal evolution of fluid flow and sedimentation. The composition of the bivalve assemblages, their densities and biomasses all differ between the several mud volcanoes and domes studied, and these parameters are thought to be related to the spatial and temporal variations of fluid expulsion through the structures, and the lithification processes linked to fluid expulsion. One very active dome is at present colonized by an exceptionally large and dense population of the methanotrophic mussel. In contrast, communities in another area, on the domes and volcanoes that are currently inactive, were colonized by only a few living vesicomyids and mussels, both associated with sulfur-oxydizing bacteria, and there were numerous empty shells. The densities and biomasses of symbiotic bivalves were far greater in the area studied than in a deeper mud volcano field on the same prism that had been studied previously. This is consistent with a report that methane production is greater in the southern region of this accretionary prism than in the northern. Numerous non-symbiotic organisms were observed in and around the areas of the seeps, some are endemic to the seep communities, including some gastropods and shrimps, others are either colonists or vagrants from the surrounding deep-sea floor. Filter feeders were very abundant, and some of these, like the serpulids and large sponges, may also be dependent on the chemosynthetic production. Faunistic composition of both symbiotic and non-symbiotic taxa, of the assemblages around these cold seeps, is closely related to that reported for communities living on hydrocarbon seeps in the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号