首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

Daily precipitation data from 31 Senegalese stations spanning the period from 1950 to 2007 were used to examine the inter-annual variations of seven rainfall indices: the annual mean precipitation (MEAN); the annual standard deviation of daily precipitation (STD); the frequency of wet days (Prcp1); the maximum number of consecutive dry days (CDD); the maximum 3-day rainfall total (R3D); the wet day precipitation intensity (SDII); and the 90th percentile of rain-day precipitation (Prec90p). The indices were spatially averaged over three agro-climatic regions in Senegal. Trends in the time series of the averaged indices were assessed using both visual examination and a modified version of the Mann-Kendall (MM-K) test. Initially negative significant trends in all seven indices suggest gradually drier conditions over the three agro-climatic regions between 1950 and 1980. In contrast, no significant trends, or even positive significant trends, were observed from the mid-1980s to 2007. The MM-K test was applied to all available data (1950–2007) and the period from 1971 to 2000. While several indices were found to have significant trends towards drier conditions for the 1950–2007 period, only PRCP1 showed a positive significant trend for the 1971–2000 period. The MM-K test did not detect a significant trend for the other indices. It was found that the rainfall deficit and therefore drought is no longer intensifying, and that the region may even become wetter. However, the period covered by the observations is still too short to resolve the question of whether there is now a trend towards wetter conditions.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

2.
Abstract

West African rainfall is characterized by a strong variability, both at decadal and interannual scales. In order to quantify the hydrological impacts of such a variability, analysis of rainfall patterns at fine scales is highly essential. This diagnostic study aims to characterize the Sudanese rainfall regime at hydrological scales, using a raingauge data set collected on the upper Oueme River catchment (Benin) between 1950 and 2002. A long-term drought is observed during the 1970s and 1980s, as in the Sahel. However, the interannual variability remains significant in the Sudanese region. The study of the seasonal cycle, based on the distinction between the oceanic and continental monsoon regimes, shows that the majority of rainfall changes occur in the continental regime. On the one hand, the rainfall peak associated with this regime that has been observed for the last 50 years has occurred increasingly earlier in the season. On the other hand, the annual rainfall deficit is mainly linked to the decrease in the number of large events during the continental part of the season.  相似文献   

3.
Abstract

The study of changes in annual rainfall in the Lake Chad basin during the 20th century is based on the analysis of 47 stations, i.e. a total of about 1600 station-years for the time series with more than 25 years of data. As previously observed in western and Sahelian Africa, robust tests of shift in time series identify a significant change in mean from the beginning of the 1960s between the latitudes 11 and 13°N, and a little later in this decade for the northern stations. The analysis of decadal rainfall shows that the 1950s decade was very humid and the next three decades were drier. These dry conditions were more and more severe until the 1980s. Data available after 1990 do not show any inversion in the trend. The annual rainfall decreases from south to north, and the regional gradient has changed from 1.5 mm km?1 in the 1950s to 1.2 mm km?1 in the 1980s between the latitudes 10 and 14°N.  相似文献   

4.
Abstract

Standardized regional mean annual rainfall series are analysed over the period 1951–1989 from a data set of 891 rainfall stations which covers 23 countries of West and Central Africa. Missing values are estimated by using regionalized indexes computed on the basis of a morpho-climatic delimitation of 44 homogeneous climatic units. Searches for statistical discontinuities in rainfall series show no discontinuity for most units of Central Africa. For several units of West Africa the first discontinuity occurs at the end of the 1950s. The main discontinuity period occurs between 1968 and 1970, followed by a second one at the beginning of the 1980s. Rainfall deficit is greater north of 10°N, and is also important in the Guinean Mountains and on the northern coast of the Gulf of Guinea, west of the Atakora Mountains. Regions leeward of mountainous areas experienced moderate rainfall decrease.  相似文献   

5.
Frequent human activities and climate change in the karst region of southwest China since the 1950s have led to the investigation of response of runoff to climate and catchment properties. Runoff coefficient (Rc) as an expression variable of the catchment response to rainfall is important to describe runoff dynamics and to estimate available streamflow for utilization. In this study, the equations of Rc associated with its attributors of climate condition and catchment property were derived using the Budyko framework. The equations were used to estimate relationship between the Rc and the attributors in the karst catchments in Guizhou province of southwest China. Analysis in the selected 23 karst catchments demonstrates that the spatial distribution of Rc is dominated by the catchment properties, such as the catchment properties of geology, slope and land use and land cover, rather than climate condition of drought index. Correlation analysis indicates that the catchment with a large slope usually has a high value of Rc, and a large proportion of carbonate rock in a catchment reduces Rc in the study area. Temporal increasing trend of Rc during 1961–2000 was found for most catchments in the study area. This increasing trend was primarily resulted from changes of catchment properties, e.g. deforestation in large areas of Guizhou province during the 1950s–1980s. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Data from the Tropical Rainfall Measuring Mission (TRMM) satellite sensors, the Microwave Imager (TMI, 3A12 V6) and other satellite sources (3B43 V6) have been used to derive the thunderstorm ratio β, total rain accumulation M, and 1-min rainfall rates, R1min, for 37 stations in Nigeria, for 0.001–1% of an average year, for the period 1998–2006. Results of the rain accumulations from the TRMM satellite (1998–2006) were compared with the data collected from 14 ground stations in Nigeria for the period 1991–2000. The two data sets are reasonably positively correlated, with correlation coefficients varying from 0.64 to 0.99. Deduced 1-min rainfall rates compared fairly well with the previous ground data of Ajayi and Ezekpo (1988. Development of climatic maps of rainfall rate and attenuation for microwave applications in Nigeria. The Nigerian Engineering 23(4), 13–30) with correlation coefficients varying from 0.17 to 0.97 in all 37 stations. The agreement was much better when compared with the International Telecommunications Union Radio communication Study group 3 digital maps with correlation coefficients varying from 0.84 to 0.98 in 23 locations; however there were negative correlation coefficient (of 0.2 in 7 stations) in the Middle Belt and a weak positive coefficient (of 0.09 in 6 stations) in the South South. Regionally the inferred mean annual 1-min rainfall rates are the highest in the South-East region with values between 111 and 125 mm/h throughout the 9 years, followed by the South-South region (105–124 mm/h). The lowest rainfall rate and rainfall accumulation occur in the North-West region (60–86 mm/h) followed, in ascending order, by the North-East (66–95 mm/h) region, the Middle-Belt region (76–102 mm/h) and the South-West region (77–110 mm/h). The present results were also compared with 9 tropical stations around the world and there was positive correlation between the results. The present results will be very useful for satellite rain attenuation modeling in the tropics and subtropical stations around the world.It is useful to note that one country, particularly one as large as Nigeria, can have significant variations in its rainfall characteristics for a variety of reasons, and this is borne out by the results presented.  相似文献   

7.
Abstract

Currently there is much discussion regarding the impact of climate change and the vagaries of the weather, in particular extreme weather events. The Himalayas form the main natural water resource of the major river systems of the Indian region. We present a brief review of the available information and data for extreme rainfall events that were experienced in different sectors of the Himalayas during the last 137 years (1871–2007). Across the entire Himalayas, from east to west, there are now 822 rainfall stations. There was an increase in the rainfall station network from 1947 onwards, especially in the Nepal and Bhutan Himalayas. Extreme one-day rainfall has been picked out for each station irrespective of the period for which data are available. The decadal distribution of these extreme one-day rainfalls shows that there is a considerable increase in the frequencies during the decades 1951–1960 to 1991–2000, whereas there is a sudden decrease in the frequencies in the present decade during 2001–2007, indicating the need to understand the response of the systems to global change and the associated physical and climatological changes. This is essential in terms of preserving this natural resource and to encourage environmental management and sustainable development of mountain regions.

Citation Nandargi, S. & Dhar, O. N. (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol. Sci. J. 56(6), 930–945.  相似文献   

8.
Mercury (Hg) concentration was investigated during 2010 based on road runoff from Nanjing Ring Highway, China. The emphasis was placed on impact of rainfall characteristics on Hg speciation concentration, and on variation characteristics of Hg speciation during road runoff for different rainfall patterns. Results indicated that average concentration of total mercury (THg) was in the range from 0.472 to 1.304 µg/L, and steady Hg (SHg) was the dominant form of Hg. Rainfall and average rainfall intensity were two important factors of determining Hg speciation concentrations during road runoff for different rainfall patterns. Rainfall pattern had significantly influence on variation of available Hg and dissolved Hg during road runoff, and on their proportions in THg. However, the proportion of SHg in THg was not obviously affected by rainfall pattern. On the other hand, toxic degree of Hg to soil environment is various for different rainfall patterns, based on Hg speciation variation.  相似文献   

9.
Influence of low frequency global Sea Surface Temperatures (SSTs) modes on decadal rainfall modes over Eastern Africa region is investigated. Fore-knowledge of rainfall distribution at decadal time scale in specific zones is critical for planning purposes. Both rainfall and SST data that covers a period of 1950–2008 were subjected to a ‘low-pass filter’ in order to suppress the high frequency oscillations. VARIMAX-Rotated Principal Component Analysis (RPCA) was employed to delineate the region into decadal rainfall zones while Singular Value Decomposition (SVD) techniques was used to examine potential linkages of these zones to various areas of the tropical global oceans. Ten-year distinct decadal signals, significant at 95% confidence level, are dominant when observed in-situ rainfall time series are subjected to spectral analysis. The presence of variability at El Niño Southern Oscillation (ENSO)-related timescales, combined with influences in the 10–12 year and 16–20 year bands were also prevalent. Nine and seven homogeneous decadal rainfall zones for long rainfall season i.e. March-May (MAM) and the short rainfall season i.e. October-December (OND), respectively, are delineated. The third season of June–August (JJA), which is mainly experienced in western and Coastal sub-regions had eight homogenous zones delineated. The forcing of decadal rainfall in the region is linked to the equatorial central Pacific Ocean, the tropical and South Atlantic Oceans, and the Southwest Indian Ocean. The high variability of these modes highlighted the significant roles of all the global oceans in forcing decadal rainfall variability over the region.  相似文献   

10.
Previous research recognized most of the Northern Adriatic coastal lagoon environments as contaminated by mercury (Hg) from multiple anthropogenic sources. Among them, the Pialassa Baiona (P.B.) Lagoon, located near the city of Ravenna (Italy), received between 100 and 200 tons of Hg, generated by an acetaldehyde factory in the period 1957-1977. Further east, the Grado Lagoon has been mainly affected by a long-term Hg input from the Idrija mine (western Slovenia) through the Isonzo River since the 16th century. Hg cycling at the sediment-water interface (SWI) of the two lagoons was investigated and compared by means of an in situ benthic chamber, estimating diffusive Hg and Methyl-Hg fluxes in the summer season. Major chemical features in porewaters (Fe, Mn, H2S, dissolved inorganic (DIC) and organic carbon (DOC), nutrients) and in the solid phase (Corg, N and S) were also explored to understand the general biogeochemical conditions of the system in response to benthic respiration. The daily integrated flux for the methylated Hg form was extremely low in P.B. Lagoon, accounting for only 7% of the corresponding flux calculated for the Grado Lagoon. Despite a higher sedimentary Hg content in the P.B. Lagoon (14.4-79.0 μg g−1) compared to the Grado Lagoon (10.7-12.5 μg g−1), the in situ fluxes of Hg in the two experimental sites appeared similar. A selective sequential extraction procedure was applied to the solid phase, showing that the stable crystalline mineral phase cinnabar (HgS) is the predominant Hg fraction (about 50%) in the Grado Lagoon surface sediments. Conversely, Hg mobilization and sequestration in the P.B. Lagoon is related to the extremely anoxic redox conditions of the system where the intense sulfate reduction, by the release of sulfur and the formation of sulfides, limits the metal recycling at the SWI and its availability for methylation processes. Thus, the environmental conditions at the SWI in the P.B. Lagoon seem to represent a natural “barrier” for the potential risk of Hg transfer to the aquatic trophic chain.  相似文献   

11.
Near-surface soil CO2 gas-phase concentration (C) and concomitant incident rainfall (Pi) and through-fall (Pt) depths were collected at different locations in a temperate pine forest every 30 min during the 2005 and 2006 growing seasons (and then averaged to the daily timescale). At the daily scale, C temporal variations were well described by a sequence of monotonically decreasing functions interrupted by large positive jumps induced by rainfall events. A stochastic model was developed to link rainfall statistics responsible for these jumps to near-surface C dynamics. The model accounted for the effect of daily rainfall variability, both in terms of timing and amount of water, and permitted an analytical derivation of the C probability density function (pdf) using the parameters of the rainfall pdf. Given the observed positive correlation between daily C and soil CO2 fluxes to the atmosphere (Fs), the effects of various rainfall regimes on the statistics of Fs can be deduced from the behavior of C under different climatic conditions. The predictions from this analytical model are consistent with flux measurements reported in manipulative experiments that varied rainfall amount and frequency.  相似文献   

12.
Abstract

Southern Ontario, Canada, has been impacted in recent years by many heavy rainfall and flooding events that have exceeded existing historical estimates of infrastructure design rainfall intensity–duration–frequency (IDF) values. These recent events and the limited number of short-duration recording raingauges have prompted the need to research the climatology of heavy rainfall events within the study area, review the existing design IDF methodologies, and evaluate alternative approaches to traditional point-based heavy rainfall IDF curves, such as regional IDF design values. The use of additional data and the regional frequency analysis methodology were explored for the study area, with the objective of validating identified clusters or homogeneous regions of extreme rainfall amounts through Ward's method. As the results illustrate, nine homogeneous regions were identified in Southern Ontario using the annual maximum series (AMS) for daily and 24-h rainfall data from climate and rate-of-rainfall or tipping bucket raingauge (TBRG) stations, respectively. In most cases, the generalized extreme value and logistic distributions were identified as the statistical distributions that provide the best fit for the 24-h and sub-daily rainfall data in the study area. A connection was observed between extreme rainfall variability, temporal scale of heavy rainfall events and location of each homogeneous region. Moreover, the analysis indicated that scaling factors cannot be used reliably to estimate sub-daily and sub-hourly values from 24- and 1-h data in Southern Ontario.

Citation Paixao, E., Auld, H., Mirza, M.M.Q., Klaassen, J. & Shephard, M.W. (2011) Regionalization of heavy rainfall to improve climatic design values for infrastructure: case study in Southern Ontario, Canada. Hydrol. Sci. J. 56(7), 1067–1089.  相似文献   

13.
In this paper, ground motion during the Independence Day earthquake of August 15, 1950 (Mw 8.6, Ben-Menahem et al., 1974) in the northeastern part of India is estimated by seismological approaches. A hybrid simulation technique which combines the low frequency ground motion simulated from an analytical source mechanism model with the stochastically simulated high-frequency components is used for obtaining the acceleration time histories. A series of ground motion simulations are carried out to estimate the peak ground acceleration (PGA) and spectral accelerations at important cities and towns in the epicentral region. One sample PGA distribution in the epicentral region encompassing the epicenter is also obtained. It is found that PGA in the epicentral region has exceeded 1 g during this earthquake. The estimated PGA’s are validated to the extent possible using the MMI values. The simulated acceleration time histories can be used for the assessment of important engineering structures in northeastern India.  相似文献   

14.
《国际泥沙研究》2022,37(5):653-661
Granite red soil (GRS) and Quaternary red clay (QRC) are two typical erodible soils in the red-soil region of southern China. Analytical and comparative studies of the characteristics of runoff and sediment yield for the two soils at various slopes are currently needed. The purpose of the current study was to clarify the characteristics of runoff and sediment yield for GRS and QRC at different slopes and to establish models for estimating sediment yield for the two soils. Forty-eight runoff microplots with four slopes (5°, 15°, 25°, and 35°) and two soils (GRS and QRC) were established and exposed to natural rainfall. Runoff and sediment yield were measured 10 times during the study period. Runoff and sediment yield for the two soils under the various slopes had similar temporal variations, and both increased with prior cumulative erosive rainfall. Runoff for GRS and QRC was moderately temporally variable, with coefficients of variation (CVs) from 46.2% to 60.6%, and sediment yield for QRC was strongly temporally variable, with CVs from 114.8% to 145.8%. Sediment yield for GRS increased with slope, but sediment yield for QRC first increased and then decreased, with a calculated inflection point of 18°, but runoff for both soils decreased with slope. The CVs of both runoff and sediment yield with slope for the two soils ranged from 3.6% to 88.0%, lower than the temporal variabilities, indicating that rainfall may have a larger impact than slope on runoff and sediment yield for QRC and GRS. Under the various slopes, runoff and sediment yield for both soils increased with rainfall and sediment yield increased with runoff, but the proportions of effective rainfall and runoff differed. Pedotransfer-function models based on rainfall, runoff, and slope accurately estimated sediment yield for the two soils, with the model fit coefficient of determination (R2) > 0.81 and the R2 for verification >0.79. These results improve the understanding of the laws governing erosion for different soil types in the red-soil region of southern China and are important for managing the erosion of collapsing gullies and sloping farmland in the region.  相似文献   

15.
An attempt has been made to examine an empirical relationship between moment magnitude (M W) and local magnitude (M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950–2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions (M W?≥?4.0) for the period 1976–2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0?≤?M L?≤?5.0) recorded by a 27-station permanent broadband network during 2001–2009 in the region. The M WM L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M WM L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.  相似文献   

16.
Abstract

Abstract The geographical context and hydroclimatology of the English Lake District means that the region is an important monitor of changes to nationally significant environmental assets. Using monthly rainfall series for sites in and around the central Lake District, a continuous ~200-year precipitation index was constructed for a representative station close to Grasmere. The bridged series shows a significant decline in summer rainfall since the 1960s, offset by increases in winter and spring that are strongly linked to North Atlantic forcing. Over longer time periods, the index exhibits several notable dry (1850s, 1880s, 1890s, 1930s, 1970s) and wet (1820s, 1870s, 1920s, 1940s, 1990s) decades. These patterns are strongly reflected by reservoir inflow series and by indicators of the biological status of the region’s freshwater lakes. It is argued that long-term climate indices will become increasingly important as managers seek to evaluate recent and project environmental changes within the context of long-term natural variability.  相似文献   

17.
Monsoon water cycle is the lifeline to over 60 per cent of the world’s population. Throughout history, the monsoon-related calamities of droughts and floods have determined the life pattern of people. The association of Green House Gases (GHGs) particularly Carbon dioxide (CO2) with monsoon has been greatly debated amongst the scientific community in the past. The effect of CO2 on the monsoon rainfall over the Indian–Indonesian region (8–30°N, 65°–100°E) is being investigated using satellite data. The correlation coefficient (Rxy) between CO2 and monsoon is analysed. The Rxy is not significantly positive over a greater part of the study region, except a few regions. The inter-annual anomalies of CO2 is identified for playing a secondary role to influencing monsoon while other phenomenon like ENSO might be exerting a much greater influence.  相似文献   

18.
ABSTRACT

This study assesses the performance of Fourier series in representing seasonal variations of the tropical rainfall process in Malaysia. Fourier series are incorporated into a spatial-temporal stochastic model in an attempt to make the model parsimonious and, at the same time, capture the annual variation of rainfall distribution. In view of Malaysia’s main rainfall regime, the model is individually fitted for two regions with distinctive rainfall profiles: one being an urban area receiving rainfall from convective activities whilst the other receives rainfall from monsoonal activities. Since both regions are susceptible to floods, the study focuses on the rainfall process at fine resolution. Fourier series equations are developed to represent the model’s parameters to describe their annual periodicity. The number of significant harmonics for each parameter is determined by inspecting the cumulative fraction of total variance explained by the significant harmonics. Results reveal that the number of significant harmonics assigned for the parameters is slightly higher in the region with monsoonal rains. The overall simulation results show that the proposed model is capable of generating tropical rainfall series from convective and monsoonal activities.
Editor D. Koutsoyiannis Associate editor K. Hamed  相似文献   

19.
Several studies revealed that peak discharges (Q) observed in a nested drainage network following a runoff-generating rainfall event exhibit power law scaling with respect to drainage area (A) as Q(A) = αAθ. However, multiple aspects of how rainfall-runoff process controls the value of the intercept (α) and the scaling exponent (θ) are not fully understood. We use the rainfall-runoff model CUENCAS and apply it to three different river basins in Iowa to investigate how the interplay among rainfall intensity, duration, hillslope overland flow velocity, channel flow velocity, and the drainage network structure affects these parameters. We show that, for a given catchment: (1) rainfall duration and hillslope overland flow velocity play a dominant role in controlling θ, followed by channel flow velocity and rainfall intensity; (2) α is systematically controlled by the interplay among rainfall intensity, duration, hillslope overland flow velocity, and channel flow velocity, which highlights that it is the combined effect of these factors that controls the exact values of α and θ; and (3) a scale break occurs when runoff generated on hillslopes runs off into the drainage network very rapidly and the scale at which the break happens is determined by the interplay among rainfall duration, hillslope overland flow velocity, and channel flow velocity.  相似文献   

20.
《Journal of Hydrology》2006,316(1-4):1-12
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu (Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass (Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals (Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based ‘tanh’ model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination (R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号