首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Sensible heat, latent heat, and other scalar fluxes cannot be measuredwithin short dense canopies, e.g., straw mulches, with standard approachessuch as eddy correlation, Bowen ratio-energy balance, aerodynamic, andvariance methods. However, recently developed surface renewal models, thatare based on the fact that most of the turbulent transfer within and abovecanopies is associated with large-scale coherent eddies, which are evidentas ramp patterns in scalar time series, offer a feasible solution. Wepresent a new air renewal model that calculates sensible heat flux atdifferent heights within and above a canopy from the average cubictemperature structure function, sampled at a moderate rate, and measuredaverage friction velocity. The model is calibrated and tested with datameasured above and within a Douglas-fir forest and above a straw mulch andbare soil. We show that the model describes half-hour variations ofsensible heat flux very well, both within the canopy and roughnesssublayers and in the inertial sublayer, for stable and unstable atmosphericconditions. The combined empirical coefficient that appears in the modelhas an apparently universal value of about 0.4 for all surfaces andheights, which makes application of the model particularly simple. Themodel is used to predict daytime and nighttime sensible heat flux profileswithin the straw mulch and within a small bare opening in the mulch.  相似文献   

2.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

3.
Modeling the impact of partial surface mulch on soil heat and water flow   总被引:1,自引:0,他引:1  
Summary Surface residue is an integral part of many cropping systems, and there are opportunities to optimise its value as mulch by improving our understanding of how it affects the near surface soil physical environment. In this study we use field measurements and a coupled soil heat and water flow model to demonstrate the effects of partial surface mulch on the near surface soil physical environment. The model is based on general physical laws and allows analysis of general system behaviour in response to changes in both inputs and systems variables. The field measurements were obtained on both a clay and a sand soil from experiments carried out in the semi-arid tropics. The treatments included a bare soil surface and 0 (completely mulched), 5 cm and 15 cm bare row zones. Both measurements and simulations showed that partial surface mulch cover can have dramatic effects on the soil physical environment near the soil surface, with the development of very strong horizontal gradients across bare soil—mulched soil boundaries. They also show that bare row zones are able to act as either a source or sink for heat and water, and that the resultant soil environmental conditions will exert strong control of soil biological activity. Although model simulations did not always match exactly with the specific measurements, they did capture the major trends given by the field data. While this suggests a certain robustness about the way the processes are modeled, there are several areas in which the model needs improvement and these are highlighted in the paper.Journal Paper No. J16277 of the Iowa Agricultural Home Economics Experiment Station, Ames, IA.With 9 Figures  相似文献   

4.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

5.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   

6.
We investigated an alternative means for quantifying daytime ecosystem respiration from eddy-covariance data in three forests with different canopy architecture. Our hypothesis was that the turbulent transport by coherent structures is the main pathway for carrying detectable sub-canopy respiration signals through the canopy. The study extends previously published work by incorporating state-of-the-art wavelet decomposition techniques for the detection of coherent structures. Further, we investigated spatial and temporal variability of the respiration signal and coherent exchange at multiple heights, for three mature forest sites with varying canopy and terrain properties for one summer month. A connection between the coherent structures and identified sub-canopy respiration signal was clearly determined. Although not always visible in signals collected above the canopy, certain cases showed a clear link between conditionally sampled respiration events and coherent structures. The dominant time scales of the coherent structure ejection phase (20?C30 s), relative timing of maximum coincidence between respiration events and the coherent structure ejection phase (at approximately ?10 s from detection) and vertical transport upward through the canopy were shown to be consistent in time, across measurement heights and across the different forest sites. Best results were observed for an open canopy pine site. We conclude that the presented method is likely to be applicable at more open rather than dense (closed) canopies. The results provided a confirmation of the connection between below- and above-canopy scalar time series, and may help the development or refinement of direct methods for the determination of component fluxes from observations above the canopy.  相似文献   

7.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

8.
Little is known about the influence of coherent structures on the exchange process, mainly in the case of forest edges. Thus, in the framework of the ExchanGE processes in mountainous Regions (EGER) project, measurements of atmospheric turbulence were taken at different heights between a forest and an adjacent clear cutting using sonic anemometers and high-frequency optical gas analyzers. From these turbulence data, dominant coherent structures were extracted using an already existing wavelet methodology, which was developed for homogeneous forest canopies. The aim of this study is to highlight differences in properties of coherent structures between a forest and a clear cutting. Distinct features of coherent exchange at the forest edge are presented and a careful investigation of vertical and horizontal coupling by coherent structures around the surface heterogeneity is made. Within the forest, coherent structures are less frequent but possess larger time scales, indicating that only the largest coherent motions can penetrate through the forest canopy. At the forest edge, there is no crown layer that can hinder the vertical exchange of coherent structures, because these exhibit similar time scales at all heights. In contradiction to that, no improved vertical coupling was detected at the forest edge. This is mainly because the structures captured by the applied routine contribute less to total turbulent fluxes at the edge than within the forest. Thus, coherent structures with time scales between 10 and 40 s are not the dominant exchange mechanism at the forest edge. With respect to the horizontal direction, a consistent picture of coherent transport could be derived: along the forest edge there is mainly good coupling by coherent structures, whereas perpendicular to the forest edge there is mainly decoupling. Finally, it was found that there is a systematic modulation of coherent structures directly at the forest edge: strong ejection motions appear in all time series during the daytime, whereas strong sweeps dominate at night. An effect of wind direction relative to the forest edge is excluded. Consequently, it is hypothesized that this might be an indication of a quasi-stationary secondary circulation above the clear cutting that develops due to differences in surface temperature and roughness. Such circulations might be a relevant turbulent transport mechanism for ecosystem-atmosphere exchange in heterogeneous landscapes.  相似文献   

9.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   

10.
Summary The modification of the flow structure arising from the removal of large patches of trees in a managed forest plantation near Gainesville, Florida is described. Using wavelet analysis of turbulence measurements taken above a forest canopy hundreds of meters downwind from the forest gap and well outside the footprint, the present paper examines changes in flow characteristics and demonstrates that the presence of the nearby clearcut introduces extraneous coherent events passing by the eddy-covariance flux measurement system.  相似文献   

11.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

12.
Two land surface schemes, SCAM and CSIRO9, were used to model the measured energy fluxes during the OASIS (Observations At Several Interacting Scales) field program. The measurements were taken at six sites along a 100 km rainfall gradient. Two types of simulations were conducted: (1) offline simulations forced with measured atmospheric input data at each of the six sites, and (2) regional simulations with the two land surface schemes coupled to the regional climate model DARLAM.The two land surface schemes employ two different canopy modelling concepts: in SCAM the vegetation is conceptually above the ground surface, while CSIRO9 employs the more commonly used `horizontally tiled' approach in which the vegetation cover is modelled by conceptually placing it beside bare ground. Both schemes utilize the same below-ground components (soil hydrological and thermal models) to reduce the comparison to canopy processes only. However, the ground heat flux, soil evaporation and evapotranspiration are parameterised by the two canopy treatments somewhat differently.Both canopy concepts reproduce the measured energy fluxes. SCAM has a slightly higher root-mean standard error in the model-measurement comparison for the ground heat flux. The mean surface radiative temperature simulated by SCAM is approximately 1K lower than in the CSIRO9 simulations. However, the soil and vegetation temperatures (which contribute to the radiative temperature) varied more in the CSIRO9 simulations. These larger variations are due to the absence of a representation of the aerodynamic interactions between vegetation and ground.  相似文献   

13.
Detection and analysis of coherent structures in urban turbulence   总被引:3,自引:0,他引:3  
Summary The continuous wavelet transform provides a suitable tool to visualize the vertical structure of turbulence and to detect coherent structures in turbulent time series. This is demonstrated with a simple example of an artificially ramp structured time series. In this study turbulence data, i.e. the fluctuations of the horizontal wind components u′ and v′, the vertical component w′ and temperature T′, sampled with 20.83 Hz and measured simultaneously at three levels (z/h=1.5, 2.1 and 3.2, with z as the sensor height and h the height of the roughness elements) over an urban canopy in the inner city of Basel, Switzerland, are analyzed. The detection of the coherent structures was performed using the Mexican hat wavelet and the zero-crossing method. The analysis for unstable conditions shows that organized structures (ejection-sweep cycles) cover about 45% of the total run time. A conditional average from a total of 116 detected ejection-sweep sequences during 7 hours was calculated over a time window of 100 seconds. This dominating time scale was derived from peak frequencies of the wavelet spectra as well as from the Fourier spectra. It is shown that the normalized amplitudes of fluctuations of temperature and longitudinal wind speed during the events are largest at the lowest measurement level just above the canopy and decrease with increasing distance from the roughness elements. A comparison of related studies over different non-urban surfaces (mainly forests) shows that the shape of conditionally averaged ejection-sweep sequences is very similar for all canopies, however, the dominating time scale in general increases the rougher the surface is and the higher the roughness elements are.  相似文献   

14.
Two empirical methods to detect coherent motions embedded in the flow field have been compared, namely the variable interval time average (VITA) method and a wavelet-based technique, both with artificial signals as well as velocity measurements from the atmospheric boundary layer over a forest canopy. It has been found that the wavelet method is slightly better than the VITA approach in coherent structure eduction, even if the results of both techniques are comparable. Also the application of the present approach to simultaneous conditionally sampled wind data has highlighted some important features of coherent structures and gust generation in canopy flows.  相似文献   

15.
Large-eddy simulations were performed of a neutrally-stratified turbulent flow within and above an ideal, horizontally- and vertically-homogeneous plant canopy. Three simulations were performed for shear-driven flows in small and large computational domains, and a pressure-driven flow in a small domain, to enable the nature of canopy turbulence unaffected by external conditions to be captured. The simulations reproduced quite realistic canopy turbulence characteristics, including typical ramp structures appearing in time traces of the scalar concentration near the canopy top. Then, the spatial structure of the organised turbulence that caused the scalar ramps was examined using conditional sampling of three-dimensional instantaneous fields, triggered by the occurrence of ramp structures. A wavelet transform was used for the detection of ramp structures in the time traces. The ensemble-averaged results illustrate that the scalar ramps are associated with the microfrontal structure in the scalar, the ejection-sweep structure in the streamwise and vertical velocities, a laterally divergent flow just around the ramp-detection point, and a positive, vertically-coherent pressure perturbation. These vertical structures were consistent with previous measurements made in fields or wind tunnels. However, the most striking feature is that the horizontal slice of the same structure revealed a streamwise-elongated region of high-speed streamwise velocity impacting on another elongated region of low-speed velocity. These elongated structures resemble the so-called streak structures that are commonly observed in near-wall shear layers. Since elongated structures of essentially similar spatial scales were observed in all of the runs, these streak structures appear to be inherent in near-canopy turbulence. Presumably, strong wind shear formed just above the canopy is involved in their formation. By synthesis of the ensemble-averaged and instantaneous results, the following processes were inferred for the development of scalar microfronts and their associated flow structures: (1) a distinct scalar microfront develops where a coherent downdraft associated with a high-speed streak penetrates into the region of a low-speed streak; (2) a stagnation in flow between two streaks of different velocities builds up a vertically-coherent high-pressure region there; (3) the pressure gradients around the high-pressure region work to reduce the longitudinal variations in streamwise velocity and to enhance the laterally-divergent flow and lifted updrafts downstream of the microfront; (4) as the coherent mother downdraft impinges on the canopy, canopy-scale eddies are formed near the canopy top in a similar manner as observed in conventional mixing-layer turbulence.  相似文献   

16.
Pseudo-wavelet analysis of turbulence patterns in three vegetation layers   总被引:4,自引:0,他引:4  
Ramp patterns in scalar traces such as temperature are the signature of coherent structures. A pseudo-wavelet analysis technique was developed in which ideal saw-tooth patterns of varying size were used as basis functions and fitted to temperature and velocity data. Data recorded from three very different vegetation stands were examined in this study. It was found that the most probable structure duration for the forest canopy was in the range 35–40 s, for the orchard canopy it was 20–25 s and for the maize it was 15–20 s. When expressed in non-dimensional form, the structure duration probability distribution for the maize canopy was about a decade larger than for the forest canopy, with the orchard canopy intermediate. The mean eddy duration versus wind shear relation falls on a narrow band for all three canopies, indicating that wind shear at the canopy top is the determining factor for the scale of the coherent eddies. The inverse of duration and intermittency of coherent structures exhibits a tendency of independence from wind shear at higher wind shear values. Coherent structures transport heat in a more efficient way than do smaller scale, less coherent motions. In all the canopies, the heat flux fractions associated with coherent structures are at least 10% higher than the corresponding time fraction.  相似文献   

17.
Modeling microclimate environments: A verification study   总被引:3,自引:0,他引:3  
A numerical model is developed for simulating microclimate of plants and bare soil. The model evaluates heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain may extend throughout the whole Planetary Boundary Layer (PBL). The model requires, either, temporal meteorological data of solar radiation, wind speed, air temperature and humidity measured over the field, or, when applied to the whole PBL, initial values of the latter three at its top. Vegetation parameters (leaf area index, photometric properties, root distribution and density) as well as soil texture, hydraulic and photometric properties are considered. The model was verified with meteorological data taken from two different climatological regions, above a bare soil and two cotton fields.For all case studies, observed and calculated values of air (except for within-canopy) and soil temperatures, wind speed, net radiation, and soil-, latent-, and sensible heat fluxes, agreed well with measurements.  相似文献   

18.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   

19.
A traditional mulching technique used in Lanzarote, Canary Islands, allows dry farming as well as pronounced water savings in irrigation. It is known to reduce evaporational losses, but is also supposed to enhance the nocturnal condensation of water vapour from the atmosphere. The mulch layer consists of porous volcanic rock fragments abundantly available on the island. The mulched surface is believed to cool rapidly and to be more hygroscopic than a bare soil surface. This was investigated during a field experiment conducted over 68 nights during different seasons in 2001 and 2002, as well as some simple laboratory measurements. It was found that nocturnal condensation on the mulch surface (max 0.33 mm) was lower than on the bare soil surface (max 0.57 mm) or any one of three alternative mulch substrates. However, a slightly stronger nocturnal cooling of the mulched as compared to the bare surface was present. It is shown that these contrary findings can be explained by the higher hygroscopicity of the dry loam soil, resulting in condensation gains beyond the strict definition of dew. Differences in plant-availability of non-hygroscopic dew water and hygroscopic water uptakes are discussed, and conditions under which mulching would show positive condensation effects are defined. This includes a theoretical section demonstrating that non-hygroscopic mulch layers of a proper thickness can provide small amounts of dew to plant roots at the mulch–soil interface. This condensation could also happen during the day and would be favoured by a high amplitude of the diurnal atmospheric moisture cycle.  相似文献   

20.
The physiological nature of canopy resistance was studied by comparing the stomatal and canopy resistance of a 10-m high Douglas-fir forest. Stomatal resistance of the needles was measured using porometry, while the canopy resistance was calculated using energy balance/Bowen ratio measurements of evapotranspiration. A typical steady increase in the forest canopy resistance during daytime hours, even at high soil water potentials, was observed. A similar trend in the stomatal resistance indicated that increasing canopy resistance during the daytime was caused by gradually closing stomata. During a dry period when soil water potentials declined from 0 to –10.5 bars, the mean daytime value of canopy resistance increased in proportion to the mean daytime value of the stomatal resistance. Values of canopy resistance calculated from stomatal resistance and leaf area index measurements agreed well with those calculated from energy balance measurements. The dependences of stomatal resistance on light, vapour pressure deficit, twig and soil water potentials art summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号