首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
采用内径为140 mm,高为250 mm的圆柱形SBR反应器进行试验,探讨SBR工艺对人工模拟配制味精废水的处理效果。通过实验分析了不同曝气时间、温度、进水浓度及污泥浓度与SBR处理效果之间的关系,确定了SBR法处理中浓度味精废水的最佳运行参数。实验结果表明,废水浓度在2 000~4 000 mg/L,温度为25℃时连续曝气6 h,污泥浓度在4 000~7 000 mg/L的条件下对人工味精废水中的COD具有较好的降解能力,COD cr的去除率可达80%。  相似文献   

2.
连续流气提式流化床启动过程中好氧颗粒污泥的形成机制   总被引:4,自引:0,他引:4  
探讨连续流气提式好氧颗粒污泥流化床(CAFB)反应器的运行特征,对该工艺颗粒污泥形成过程、形成机理和颗粒性质进行分析。以市政污泥为接种污泥,以醋酸钠为碳源,在连续运行方式下培养好氧颗粒污泥。研究结果表明:CAFB反应器启动的第4-5天即有大量颗粒污泥形成,颗粒直径800~1 000 μm,比重1.006,生物相丰富,能够分泌大量胞外聚合物。当COD有机负荷高达8 和13 kg/(m3·d)时,对COD处理效率均维持在93%~97%,COD出水质量浓度仅为30~80 mg/L,引起启动后期丝状菌的大量繁殖,污泥流失。进一步提高污泥负荷有望控制污泥膨胀。  相似文献   

3.
新型SBR工艺处理生活废水的研究   总被引:2,自引:0,他引:2  
新型SBR工艺是在传统SBR反应器中加一隔板,将反应器从空间上分成上下两个区域,上面是好氧区,下面为缺氧厌氧区。实验通过水力停留时间和上下区域体积比对脱氮除磷效果影响的研究,确定该工艺的最佳运行工况和反应器内挡板位置;同时与传统SBR工艺进行对比实验研究。结果表明,进水60 m in,曝气240 m in,沉淀30 m in,排水15 m in,闲置15 m in;上下区域体积比为1∶1时脱氮除磷效果最佳,TN和TP去除率达到88.7%和78.4%,其效果均好于传统SBR工艺。  相似文献   

4.
在上流式好氧颗粒污泥床反应器中, 以厌氧颗粒污泥和好氧絮状活性污泥为接种泥, 采用人工配制的模拟废水, 成功培养出性能优异的好氧颗粒污泥.反应器内污泥浓度稳定在5g/L左右, 颗粒污泥粒径为0.5~2.0mm, 当进水COD为2000mg/L, 容积负荷为4.8kg/(m3·d)时, 系统对COD的去除率稳定在96%以上.通过扫描电镜观察, 好氧颗粒污泥是层状结构, 表面有大量丝状菌缠绕, 内部有短杆菌和空穴存在.逐步提高制药废水在进水中的比例, 经过47d的培养, 生物制药废水完全取代模拟废水, 系统对COD、NH3-N、TP的去除率分别稳定在90%、90%和70%以上.   相似文献   

5.
染料废水对水环境和水景观的影响不容忽略.急需寻求一种价格低廉、处理效能高的脱色技术。研究采用多格室水解反应器培养具有高脱色功能的缺氧污泥颗粒,并就缺氧污泥颗粒的形成条件和对染料废水的脱色机理、模型进行了阐述,提出了今后应进一步研究的内容。  相似文献   

6.
杨爱武  胡垚  杨少坤 《岩土力学》2019,40(11):4439-4449
我国城市污泥产量巨大,如果得不到妥善处理将会严重影响环境综合治理。为了研究一种高效、资源、稳定的城市污泥处理技术,对城市污泥先进行生石灰消化处理,再通过正交试验,以无侧限抗压强度为指标,优选出生石灰、原料土、城市污泥、固化剂等的最佳配比,配制成一种新型城市污泥固化土,并对其力学特性进行试验研究。试验结果表明:研制的新型城市污泥固化剂固化处理城市污泥效果很好,重金属浸出量满足国家规范要求,污泥固化土强度随着养护龄期的增加而增大,且28 d后慢慢趋于相对稳定,碱性对强度有促进作用,建议固化土初始配制含水率最高控制在45%~50%之间。三轴剪切试验得到的应力峰值和结构屈服应力随着围压和养护龄期的增大而增大,环剪试验得到的残余强度与养护龄期及有效法向应力成正比,与剪切位移成反比。  相似文献   

7.
采用一套新型生物组合工艺(CSTR产酸发酵反应罐-UASBAF复合厌氧反应池-NMBR新型多级环流膜生物反应器)处理玉米深加工企业生产废水。研究结果表明:经过50d的启动期后系统进入稳定运行阶段,在稳定运行的155d内,组合工艺对COD和BOD的去除率高达99.4%和99.8%。基于厌氧消化数学模型(ADM1)和活性污泥数学模型(ASM1)对本组合工艺进行数学模拟研究,结果表明,该模型对每个工艺的出水COD预测平均误差均在15%以内,表明该模型对这套新型工艺具有很好的预测效果。  相似文献   

8.
铜冶炼中由于原料不稳定,导致其下属配套含酸废水污水处理站产生的污泥砷含量波动较大,现利用石灰、水泥、硫酸亚铁作为固化剂对其进行固化/稳定化处理以达到安全填埋的要求。通过调制不同的配比,确定处理最优条件。结果表明:当污泥与石灰、水泥、硫酸亚铁的质量比为5∶0.7∶1∶2时效果最佳。  相似文献   

9.
疏浚污泥的处理与处置是世界性的环保难题,资源化处理技术的研究有重要的工程应用价值。通过化学处理技术,在疏浚污泥中加入磷酸,将其中的重金属转变成难溶的金属磷酸盐固化在处理产物中,加入FeCl3试剂与水作用,改善处理后污泥的物理力学性质;通过热处理技术大大降低有机物的含量,使固体残留物无害化。研究了不同磷酸含量和不同FeCl3含量对其物理力学和热学性质的影响。试验结果表明,处理后的疏浚污泥污染物活动性降低,并有可能用作建筑材料。  相似文献   

10.
以一体式膜生物反应器(SMBR)对生活污水进行处理,研究不同水力停留时间(HRT)条件下污泥浓度对有机物去除率的影响,并对所得试验数据进行曲线拟合,建立有机物去除率与污泥浓度的数学模型。试验结果表明:在溶解氧(DO)浓度为2.0~3.0mg/L的条件下,HRT为3h、2h和1h时,有机物去除率(η)随着污泥浓度的增大而增大,但当污泥浓度增大到6000mg/L时,η增大趋势逐渐减小,并趋于稳定。有机物去除率与污泥浓度的数学模型表明:有机物去除率(η)与水力停留时间(τ)、进水COD浓度(S_o)和污泥负荷率(N_s)等主要运行参数有关,并可以通过调节运行参数τ、S_o和N_s来达到所需要的COD去除率。  相似文献   

11.
通过向一体式膜生物反应器中分别投加聚合铝和粉煤灰改变料液性质,来预防膜污染和提高膜生物反应器对总磷的去除效率,并通过X射线衍射和红外光谱实验分析活性污泥性质的变化,利用扫描电镜分析中空纤维膜表观结构的变化情况,探讨防治膜污染的机理.实验结果表明:聚合铝的投加改变了活性污泥的性质和生物膜的表观结构,可有效地减缓膜污染,且除磷效率达85%以上;而投加粉煤灰并没有明显效果.  相似文献   

12.
Hybrid anaerobic baffled reactor for treatment of desizing wastewater   总被引:3,自引:3,他引:0  
Polyvinyl alcohol-containing desizing wastewater discharged within final textile wastewater has a great impact to the environment due to its poor biodegradability. An improved lab-scale hybrid anaerobic baffled reactor was developed to treat desizing wastewater. The modification was achieved by increasing the height of hybrid anaerobic baffled reactor and application of proper effluent recycle enabled to increase the ability of entrapping microbe-rich small particles in the reactor and prompted the formation of granules. The significant difficulty in hybrid anaerobic baffled reactor operation is the slow start-up procedure, which is crucial to the overall polyvinyl alcohol-containing desizing wastewater treatment. Therefore, the ability of a hybrid anaerobic baffled reactor, treating desizing wastewater, to achieve a prompt start-up was studied at lab-scale. Results showed that inoculated with anaerobic granular sludge and adoption of effluent recycle during start-up, the system demonstrated a good performance of polyvinyl alcohol removal efficiency (above 17.2 %) and satisfactory stability of pH and alkalinity in effluent (range around 7.4–8.0 and 700–920 mg/L, respectively) and the sludge appeared obviously granulation. Thus, the prompt start-up was achieved after 60 days. The start-up strategy used for this process has achieved its goals by creating an active microbial population. The improved lab-scale hybrid anaerobic baffled reactor proved to be an efficient reactor configuration for the treatment of desizing wastewater, which favored the prompt start-up of hybrid anaerobic baffled reactor. The results also provide evidence to modify the design of anaerobic baffled reactor to improve reactor performance.  相似文献   

13.
Two sets of lab-scale sequencing batch reactors (SBR), i.e., control SBR and SBR using zeolite as carrier (zeo-SBR), were applied to assess nitrogen removal efficiency. The test results revealed that zeolite powder added in SBR could improve its performance. Due to the combination of zeolite adsorption for NH4 +–N and enhanced simultaneous nitrification and de-nitrification (SND), a higher removal ratio of ammonia nitrogen in wastewater was observed in the test reactor, and the introduction of zeolite powder was helpful to inhabit sludge bulging comparing with the control SBR, in other words, activated sludge immobilized by zeolite powder could remove NH4 +–N, COD, and PO4 significantly in a shorter cycle time. Applied two hydraulic retention times (HRTs) showed that the nitrogen and phosphorus removal could be improved while adapting to load variations.  相似文献   

14.
The wastewater discharged by poultry slaughterhouse industries are characterized mainly by high biochemical oxygen demand, high suspended solids and complex mixture of fats, proteins and fibers requiring systematic treatment prior to disposal. In this study, the performance of an upflow anaerobic filter reactor for treating Indian poultry slaughterhouse wastewater under low upflow velocity of 1.38 m/day at mesophilic temperature (29-35 °C) was investigated. The reactor was inoculated with anaerobic non-granular sludge from an anaerobic reactor treating the poultry slaughterhouse wastewater. The reactor took 147 days for complete start-up with removal efficiencies of total chemical oxygen demand and soluble chemical oxygen demand of 70 and 79 % respectively. The maximum total chemical oxygen demand removal efficiency of 78 % was achieved at an organic loading rate of 10.05 kg/m3/day and at an hydraulic retention time of 12 h. The average methane content varied between 46 and 56 % and methane yield at maximum removal efficiency was 0.24 m3 CH4/kg CODremoved·day. Sludge granules of 1–2 mm were observed in between the packing media. Scanning electron microscope analysis revealed that sludge granules are composed of clumps of Methanosarcina clustered with less intertwined Methanosaeta fibre of granules. The lower velocity used in this study has achieved better performance of the reactor by creating active microbial formation with stable pH upto an organic loading rate of 14.3 kg/m3/day. This has proved that the poultry slaughterhouse wastewater can be treated using anaerobic filter reactor under low upflow velocity.  相似文献   

15.
16.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

17.
吗啉废水的生化处理工艺   总被引:2,自引:0,他引:2  
以含有吗啉、甲基吗啉的高浓度有机废水为研究对象,提出了曝气吹脱-吸附-生物处理的联合工艺,并在室内进行了小试实验。结果表明:原废水经过2次曝气吹脱后,ρ(NH3-N)从62 500 mg/L降为431 mg/L,ρ(COD)从50 840 mg/L降为26 051 mg/L。通过吸附实验,ρ(COD)从26 051 mg/L降为2 769 mg/L,ρ(NH3-N)从412 mg/L降为134 mg/L。在生物处理室内小试实验中,采用了活性污泥反应器与曝气生物滤池相结合的处理工艺。在活性污泥反应系统中,当废水pH为7.5、ρ(DO)为4.3 mg/L、水力停留时间为30 h时,COD的去除率最高,可以达到83.1%。在曝气生物滤池中,当ρ(DO)为3.3 mg/L时,COD去除率最高,达到55.8%。在生物处理的最佳参数条件下进行连续监测,当进水ρ(COD)为2 769 mg/L、出水ρ(COD)平均值为387 mg/L时,COD去除率可达到85.9%。吗啉废水经过此联合工艺的处理,ρ(COD)从50 840 mg/L降为387 mg/L。  相似文献   

18.
Two simulation tools for industrial wastewater treatment plan using a biofilm activated sludge process are contrasted in this paper; biofilm activated sludge consists of moving bed biofilm reactor followed by conventional activated sludge. Wastewater treatment simulator software (BioWin) and general chemical engineering process software with an integrated mathematical model (Aspen Custom Modeler) are used as simulation tools under different configurations of wastewater treatment plant and influent conditions. The simulated results using BioWin do not fit the experimental concentrations of chemical oxygen demand and total suspension solids from a full-scale biofilm activated sludge process for cellulose and viscose plant wastewaters; however, using Aspen Custom Modeler the simulated results fit adequately. The differences between the two software are explained by the consideration or not of the predation and hydrolysis phenomena in the mathematical model. The trade-off between the models complexity and the goodness in the adjustment of the results shows that in the biofilm activated sludge process the inclusion of predation in the mathematical model becomes essential. The optimization tool included in Aspen Custom Modeler is selected to optimize the operational conditions using three objective functions: minimization of nutrients in the effluent, minimization of sludge production and maximization of excess sludge concentration. Operating cost of the process can be reduced up to 10% considering the optimal conditions proposed by the optimization tool.  相似文献   

19.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号