首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
MAX is a proposed Laue lens gamma-ray telescope taking advantage of Bragg diffraction in crystals to concentrate incident photons onto a distant detector. The Laue lens and the detector are carried by two separate satellites flying in formation. Significant effort is being devoted to studying different types of crystals that may be suitable for focusing gamma rays in two 100 keV wide energy bands centered on two lines which constitute the prime astrophysical interest of the MAX mission: the 511 keV positron annihilation line, and the broadened 847 keV line from the decay of 56Co copiously produced in Type Ia supernovae. However, to optimize the performance of MAX, it is also necessary to optimize the detector used to collect the source photons concentrated by the lens. We address this need by applying proven Monte Carlo and event reconstruction packages to predict the performance of MAX for three different Ge detector concepts: a standard coaxial detector, a stack of segmented detectors, and a Compton camera consisting of a stack of strip detectors. Each of these exhibits distinct advantages and disadvantages regarding fundamental instrumental characteristics such as detection efficiency or background rejection, which ultimately determine achievable sensitivities. We conclude that the Compton camera is the most promising detector for MAX in particular, and for Laue lens gamma-ray telecopes in general.  相似文献   

2.
The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising. PACS: 95.55.Ka, 29.30.Kv, 61.10.-i  相似文献   

3.
This paper analyses two height energy astrophysics missions, MAX and SIMBOL-X, which have been studied in CNES in the frame of a large formation flying study program. It is particularly interesting to notice that the scientific specifications of two different missions lead to the same engineering solutions for the whole mission aspects and then advocate for a similar space segment architecture and re-use of common elements, thus allowing potential cost reductions for a second mission.In deed, the same level of data to download and a similar signal-to-noise ratio requirements leads to the same orbit and communications system, the same level of pointing precision and distance inter satellites lead to the same formation flying Guidance Navigation and Command (GNC) architecture. At the end, the same level of mass and thermal constraints leads to the same range of platform and the same propulsion systems and finally to the same launcher.  相似文献   

4.
We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1?C200?keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1?C200?keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk?Cthermal emission?Ciron line?Ccomptonisation?Creflection?Cnon-thermal emission?Cjets. Neutron stars?Cmagnetic field?Ccyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines?Cdirect measurement of magnetic filed?Cequation of state constraints?Cshort bursts?Cgiant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN??s. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20?keV). Element formation?CSupernovae: The energy resolution achievable for this mission (<0.5?keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78?keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40?C50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1?C200?keV energy range with a single detector, a double-sided Germanium strip detector operating at 80?K. The main features will be: (a) good energy resolution (.150?keV at 5?keV and <.5?keV at 100?keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.  相似文献   

5.
The ANTARES telescope, currently in construction, is aiming to detect high energy neutrinos. Data from the first line of the detector, which became operational recently, demonstrates that the nominal time and space resolutions are achieved. Various models predict the emission of high energy neutrinos from astrophysical sources such as Supernova Remnants, Microquasars, Active Galactic Nuclei and Gamma Ray Bursts. With the custom designed data acquisition system of this detector, in combination with the existing satellite alert systems, the ANTARES telescope has an increased sensitivity for neutrinos from Gamma Ray Bursts compared to conventional time independent sources. Gabrielle Lelaizant on behalf of the ANTARES Collaboration.  相似文献   

6.
Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60–600keV. The high segmentation of this type of detector (1–2mm pixel size) and the good energy resolution (a few keV FWHM at 500keV) will allow high sensitivity polarisation measurements (a few % for a 10mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polarisation through the use of Monte Carlo simulations (based on the GEANT 4 toolkit) for on and off-axis sources with power law emission spectra using the point spread function of a Laue lens in a feasible configuration.  相似文献   

7.
This paper builds upon the work of Palmer and Imre exploring the relative motion of satellites on neighbouring Keplerian orbits. We make use of a general geometrical setting from Hamiltonian systems theory to obtain analytical solutions of the variational Kepler equations in an Earth centred inertial coordinate frame in terms of the relevant conserved quantities: relative energy, relative angular momentum and the relative eccentricity vector. The paper extends the work on relative satellite motion by providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, including the zero angular momentum case. The geometrical framework assists the design of complex formation flying trajectories. This is demonstrated by the construction of a tetrahedral formation, described through the relevant conserved quantities, for which the satellites are on highly eccentric orbits around the Sun to visit the Kuiper belt.  相似文献   

8.
The gamma-ray imager (GRI) is a novel mission concept that will provide an unprecedented sensitivity leap in the soft gamma-ray domain by using for the first time a focusing lens built of Laue diffracting crystals. The lens will cover an energy band from 200–1,300 keV with an effective area reaching 600 cm2. It will be complemented by a single reflection multilayer coated mirror, extending the GRI energy band into the hard X-ray regime, down to ∼10 keV. The concentrated photons will be collected by a position sensitive pixelised CZT stack detector. We estimate continuum sensitivities of better than 10 − 7 ph cm − 2s − 1keV − 1 for a 100 ks exposure; the narrow line sensitivity will be better than 3 × 10 − 6 ph cm − 2s − 1 for the same integration time. As focusing instrument, GRI will have an angular resolution of better than 30 arcsec within a field of view of roughly 5 arcmin—an unprecedented achievement in the gamma-ray domain. Owing to the large focal length of 100 m of the lens and the mirror, the optics and detector will be placed on two separate spacecrafts flying in formation in a high elliptical orbit. R&D work to enable the lens focusing technology and to develop the required focal plane detector is currently underway, financed by ASI, CNES, ESA, and the Spanish Ministery of Education and Science. The GRI mission has been proposed as class M mission for ESAs Cosmic Vision 2015–2025 program. GRI will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the universe. All authors are on behalf of a large international collaboration The GRI mission has been proposed as an international collaboration between (in alphabetical order) Belgium (CSR), China (IHEP, Tsinghua Univ.), Denmark (DNSC, Southern Univ.), France (CESR, APC, ILL, CSNSM, IAP, LAM), Germany (MPE), Ireland (UCD School of Physics), Italy (INAF/IASF Rome, Bologna, Milano, Palermo; INAF/OA Brera, Roma; UNIFE, CNR/IMEM), Poland (NCAC), Portugal (Combra Univ., Evora Univ.), Russia (SINP, MSU, Ioffe Inst.), Spain (IEEC-CSIC-IFAE, CNM-IMB), the Netherlands (SRON, Utrecht Univ.), Turkey (Sabanci Univ.), United Kingdom (Univ. of Southampton, MSSL, RAL, Edinburgh Univ.), and the United States of America (SSL UC Berkeley, Argonne National Lab., MSFC, GSFC, US NRL).  相似文献   

9.
SIMBOL-X is a hard X-ray mission based on a formation flight architecture, operating in the 0.5–80 keV energy range, which has been selected for a comprehensive Phase A study, being jointly carried out by CNES and ASI. SIMBOL-X makes uses of a long (in the 25–30 m range) focal length multilayer-coated X-ray mirrors to focus for the first time X-rays with energy above 10 keV, resulting in at least a two orders of magnitude improvement in angular resolution and sensitivity compared to non focusing techniques used so far. The SIMBOL-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics, related in particular to the physics and energetic of the accretion processes on-going in the Universe, also performing a census of black holes on all scales, achieved through deep, wide-field surveys of extragalactic fields and of the Galactic center, and the to the acceleration of electrons and hadrons particles to the highest energies. In this paper, the mission science objectives, design, instrumentation and status are reviewed. PACS: 95.55 – Astronomical and space-research instrumentation 95.85 – Astronomical Observations 98.85.Nv – X-ray  相似文献   

10.
Several methods of asteroid deflection have been proposed in literature and the gravitational tractor is a new method using gravitational coupling for near-Earth object orbit modification. One weak point of gravitational tractor is that the deflection capability is limited by the mass and propellant of the spacecraft. To enhance the deflection capability, formation flying solar sail gravitational tractor is proposed and its deflection capability is compared with that of a single solar sail gravitational tractor. The results show that the orbital deflection can be greatly increased by increasing the number of the sails. The formation flying solar sail gravitational tractor requires several sails to evolve on a small displaced orbit above the asteroid. Therefore, a proper control should be applied to guarantee that the gravitational tractor is stable and free of collisions. Two control strategies are investigated in this paper: a loose formation flying realized by a simple controller with only thrust modulation and a tight formation realized by the sliding-mode controller and equilibrium shaping method. The merits of the loose and tight formations are the simplicity and robustness of their controllers, respectively.  相似文献   

11.
In spite of the tremendous potential of hard X-ray astronomy (>10 keV) for studying high energy phenomena in celestial objects, the current generation of direct-viewing telescopes is heavily noise limited. It can accurately study only the strongest sources. Thus focusing of hard X-rays is mandatory in order to overcome these sensitivity limitations. Several focusing techniques of hard X-rays (>10 keV) are under study. We will discuss the Bragg diffraction technique and the imaging performance of a concentrator configuration based on this technique. Apart from its unprecedented flux sensitivity, the Bragg concentrators show intrinsic capabilities as polarimeters.  相似文献   

12.
The Fresnel Diffractive Imager concept is proposed for space borne astronomical imaging at Ultra-Violet wavelengths, using diffractive focalization. The high angular resolution and high dynamic range provided by this new concept makes it an ideal tool to resolve circumstellar structures such as disks or jets around bright sources, among them, pre-main sequence stars and young planetary disks. The study presented in this paper addresses the following configuration of Fresnel diffractive imager: a diffractive array 4 m large, with 696 Fresnel zones operating in the ultra-violet domain. The diffractive arrays are opaque foils punched with a large number of void subapertures with carefully designed shapes and positions. In the proposed space missions, these punched foils would be deployed in space. Depending on the size of the array and on the working spectral band, the focal length of such imagers will range from a few kilometers to a few tens of kilometers. Thus, such space mission requires a formation flying configuration for two satellites around the L2 Sun-Earth Lagragian point. In this article, we investigate numerically the potential of Fresnel arrays for imaging circumstellar dust environments. These simulations are based upon simple protostellar disk models, and on the computed optical characteristics of the instrument. The results show that protoplanetary disks at distances up to a few thousand parsecs can be successfully studied with a 4 m aperture Fresnel imager in the UV.  相似文献   

13.
A space dark matter detector is proposed by the Key Laboratory of Dark Matter And Space Astronomy of Chinese Academy of Sciences for detecting the high-energy electrons and Gamma particles produced by the annihilation of dark matter in space. The whole detector is mainly composed of the BGO (bismuth germanium oxide) high-energy image calorimeter and scintillation hodoscope. The energy range of the detector will cover the high-energy electrons and Gamma particles of 10 Gev∼10 TeV, in which the energies of high-energy particles are mainly deposited in the BGO calorimeter. For verifying the scheme of the detector, we have designed a prototype readout system for the BGO calorimeter of the space dark matter detector, and made a preliminary test on it.  相似文献   

14.
While trajectory design for single satellite Earth observation missions is usually performed by means of analytical and relatively simple models of orbital dynamics including the main perturbations for the considered cases, most literature on formation flying dynamics is devoted to control issues rather than mission design. This work aims at bridging the gap between mission requirements and relative dynamics in multi-platform missions by means of an analytical model that describes relative motion for satellites moving on near circular low Earth orbits. The development is based on the orbital parameters approach and both the cases of close and large formations are taken into account. Secular Earth oblateness effects are included in the derivation. Modeling accuracy, when compared to a nonlinear model with two body and J2 forces, is shown to be of the order of 0.1% of relative coordinates for timescales of hundreds of orbits. An example of formation design is briefly described shaping a two-satellite formation on the basis of geometric requirements for synthetic aperture radar interferometry.  相似文献   

15.
The Solar Maximum Mission Gamma Ray Experiment (SMM GRE) utilizes an actively shielded, multicrystal scintillation spectrometer to measure the flux of solar gamma rays. The instrument provides a 476-channel pulse height spectrum (with energy resolution of 7% at 662 keV) every 16.38 s over the energy range 0.3–9 MeV. Higher time resolution (2 s) is available in three windows between 3.5 and 6.5 MeV to study prompt gamma ray line emission at 4.4 and 6.1 MeV. Gamma ray spectral analysis can be extended to 15 MeV on command. Photons in the energy band from 300–350 keV are recorded with a time resolution of 64 ms. A high energy configuration also gives the spectrum of photons in the energy range from 10–100 MeV and the flux of neutrons 20 MeV. Both have a time resolution of 2 s. Auxiliary X-ray detectors will provide spectra with 1-sec time resolution over the energy range of 10–140 keV. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines as well as the intensity of extremely broadened lines and the photon continuum. The main objective is to use this time and spectral information from both nuclear gamma ray lines and the photon continuum in a direct study of the dynamics of the solar flare/particle acceleration phenomena.  相似文献   

16.
The Fresnel interferometric imager is a new kind of high angular resolution space instrument for the UV domain, and the related astrophysical targets. This optical concept is meant to allow larger and lighter apertures in space than solid state optics. It yields high dynamic range images and same resolution as that of a solid aperture of the same size. The long focal lengths of the Fresnel imager (a few kilometers) require operation by two-vessel formation flying in space. The first vessel holds a large and thin opaque foil punched with thousands of holes: the interferometric array, the second vessel holds the focal instrumentation. This Fresnel imager has been designed for mapping high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Compact objects such as large stellar photospheres may be imaged with array sizes of a few meters in the UV. Larger and more complex fields can also be imaged, although with a lesser dynamic range, such as small fields on galactic clouds or extragalactic fields, or in an other domain: small solar system bodies. We present the first images obtained on artificial sources with an 8 cm laboratory testbed array having 26680 apertures, the measured dynamic range of these images and their diffraction limited angular resolution. A 3 m class probatory space mission will be studied and follow a validation path, It has been submitted as a proposal to the ESA Cosmic Vision program.  相似文献   

17.
Satellites flying in formation is a concept being pursued by the Air Force and NASA. Potential periodic formation orbits have been identified using Hill's (or Clohessy Wiltshire) equations. Unfortunately the gravitational perturbations destroy the periodicity of the orbits and control will be required to maintain the desired orbits. Since fuel will be one of the major factors limiting the system lifetime it is imperative that fuel consumption be minimized. To maximize lifetime we not only need to find those orbits which require minimum fuel we also need for each satellite to have equal fuel consumption and this average amount needs to be minimized. Thus, control of the system has to be addressed, not just control of each satellite. In this paper control of the individual satellites as well as the constellation is addressed from an astrodynamics perspective.  相似文献   

18.
TAUVEX - Tel Aviv University UV Explorer is a space telescope that is currently being built in Israel, to be flown on board the Russian international sattelite SRG - Spectrum Roentgen Gamma, in late 1995 or early 1996. TAUVEX is an imager in the near UV spectral window. Its major goal is to make a survey of about 10% of the UV sky, in the range = 1350 - 3500Å. A successful operation of TAUVEX will partially fill an important gap in our recognition of the sky, namely the distribution and the nature of the celestial UV sources, which are still mostly unknown. TAUVEX will also operate as a fast multicolor photometer in its UV range of operation. TAUVEX is aligned in parallel to the common optical axix of all the other instruments on board SRG, most of which are telescopes and monitors for high energy radiation. SRG will be thus able to perform for the first time in history simultaneous astronomical observations in one and the same celestial body, that cover together 7 order of magnitude of the recorded radiation. The observations of TAUVEX can be greatly enhanced by ground base observations.  相似文献   

19.
The expected lifetimes for molecular clouds has become a topic of considerable debate as numerical simulations have shown that MHD turbulence, the nominal means of support for clouds against self-gravity, will decay on short timescales. Thus it appears that either molecular clouds are transient features or they are resupplied with turbulent energy through some means. Jets and molecular outflows are recognized as a ubiquitous phenomena associated with star formation. Stars however form not isolation but in clusters of different density and composion. The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we present new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their abilityto drive turbulent flows in molecular clouds. Our studies focus on scales associated with young star forming clusters. In particular we first show that direct collisions between active outflows are not effective at stirring the ambient medium. We then show that fossil cavities from “extinct” outflows may provide the missing link in terms of transferring momentum and energy to the cloud.  相似文献   

20.
The domain of high speed optical astrophysics is still quite unexplored. The availability of 10 meter diameter telescopes offers the unique possibility to investigate variability of faint objects at submillisecond time scales. In this paper I describe the concepts of a photometer and a spectrometer for high speed astronomical observations. The instruments are based on a photon counting detector developed for high energy physics, the Visible Light Photon Counter (VLPC). The detector has a quantum efficiency in the visible as high as 88% and performs photon counting with sub microsecond time resolution. The photometer is built using VLPC arrays. Adding a grating a VLPC array can be used in a time resolved spectrograph with medium resolution. This paper develops, starting from experimental data, the concept of the two VLPC based instruments and their application to time resolved photometry and spectroscopy of compact objects (pulsars, cataclysmic variables, low mass X-ray binary systems etc) and optical counterparts of Gamma Ray Bursts. The high speed optical observations are the ideal complement to X/γ rays and gravitational wave studies. The application of the instruments to the optical photometry of pulsars, the spectrophotometry of the prompt optical flash from Gamma Ray Bursts and the study of binary systems are discussed in detail: in the last two applications the instruments offer better opportunities than existing instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号