首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
马浩明 《华南地震》2009,(Z1):44-49
以花岗岩原地重熔理论为依据重新解释了广东大湾—港口地震剖面。大湾—港口地震剖面可具体细分为上地幔层(Vp>8.05 km/s)、下地壳层(Vp=6.6-6.8 km/s)、中上地壳的壳内低速层(Vp=5.8 km/s)、基底层(Vp=5.9-6.3 km/s)以及沉积盖层(Vp<5.9 km/s);壳内多次重熔形成多层花岗岩,重熔层上方原始岩石物质组成的差异导致熔融后产生的重熔花岗岩层在横向上由不均一的物质组成,从而使得8 km深度以上的地震界面波动起伏,而在约8 km深度之下,波速界面起伏平缓或近于水平,表明在此深度之下的岩石物质组成在横向上相对均一:壳内重熔过程导致物质成分垂向深度变化是壳内地震波速自上而下增高的原因;壳内低速层的存在表明本区上陆壳重熔层的底部到目前尚未完全固化。地震界面起伏的特点与根据地表地质资料勾画的重熔界面波动形态有极好的吻合性,显示地震资料能够准确地揭示重熔界面位置和形态。  相似文献   

2.
青藏高原Q值结构反演   总被引:6,自引:0,他引:6       下载免费PDF全文
吴建平  曾融生 《地震学报》1996,18(2):208-214
利用中美合作在青藏高原布设的11台PASSCAL宽频带数字地震记录的瑞利面波资料,测定了青藏高原东部地区周期为10~130 s范围内的平均瑞利波相速度和衰减系数R;反演了该地区地壳、上地幔的平均S波速度结构和Q结构.结果表明,该地区平均Q值偏低,并在地壳中存在地震波强吸收层.地壳中的低Q层(Q=93~141)位于16~42 km的的范围内,它与S波低速层(21~51 km)基本一致.从地壳下部63 km后,Q值由114随深度逐渐低至上地幔180 km处的34.由地壳内低速层与低Q层相对应可以推测,在该深度范围内可能存在岩石的熔融或部分熔融现象.在反演的S波速度结构中,地壳的平均厚度为71 km,51 km处的下地壳存在一明显的速度界面,96~180 km处的低速层(4.26 km/s)可能与软流层相对应.   相似文献   

3.
甘肃省各数字测震台下方地壳速度结构研究   总被引:5,自引:3,他引:2       下载免费PDF全文
利用甘肃省数字台网的资料,应用远震接收函数方法对各个台站下方的地壳结构进行了分析研究.研究结果表明,Moho面的深度都在50 km左右,甘南的Moho面深度普遍大于河西;地壳可以分为两层,20 km为其分界面.上地壳普遍存在低速层,其成因不是岩石熔融所致,而是其它地球物理和地球化学因素所致.另外各台站下方地表盖层的速度也存在很大差异.  相似文献   

4.
山西裂谷带地壳岩石波速的研究   总被引:2,自引:2,他引:2  
通过实验建立了岩石成分与波速的关系,波速和岩石的各向异性,矿物相变在波速曲线中的反映以及实验温度和压力对波速的影响,尤其得到了高温下的新资料.用实验数据结合地球物理、地质资料建立了山西裂谷带与相邻太行山隆起区地壳各层圈的物质组成,对比说明,两构造单元下地壳的岩石组成是不同的.最后分析了盆地下地壳中部的组成、水和环境条件,认为低速带是由岩石部分熔融造成的.  相似文献   

5.
珠江口海域滨海断裂带的地震学特征   总被引:8,自引:4,他引:4       下载免费PDF全文
利用2010年珠江口外海陆地震联测数据,探测到滨海断裂带在担杆岛外12 km处发育,断裂带主体倾向东南、宽约20 km,沉积层在断裂带内迅速增厚引起陆上固定地震台站的Pg震相在对应断裂带位置的走时明显滞后.通过震相分析和走时正演拟合,获得了滨海断裂带两侧由浅至深的纵波速度结构模型,断裂带内部沉积层速度为1.8~3.5 km/s,上地壳速度5.2~6.1 km/s,下地壳速度为6.3~6.6 km/s,莫霍面的埋深由滨海断裂带陆侧的29 km抬升至其海侧的27 km.滨海断裂带两侧的地壳结构特征明显不同,证实了该断裂带是华南陆区正常型陆壳与南海减薄型陆壳分界断裂的性质.在华南沿海和海陆过渡带的下地壳顶部探测到厚约3 km、层速度为5.5~5.9 km/s的低速层,往海域逐渐减薄尖灭.壳内低速层是地壳中的力学软弱带,与近似正交的NEE向滨海断裂带和NW向断裂带共同组构成了该区地震活动的孕震构造.  相似文献   

6.
文中基于2011年9月2日—2014年1月16日小江断裂带及邻区48个台站的远震三分量波形数据提取径向P波接收函数,采用两步反演法和Bootstrap重采样技术反演了各台站下方的S波速度结构,对小江断裂带及邻区的地壳深部结构进行了研究。结果表明:1)研究区地壳的S波速度在横向和垂向上都存在明显的非均匀特性,近地表处有2~4km厚的低速沉积层;中上地壳的S波速度呈高、低速相间分布;在20~35km的深度范围内存在明显的低速层,主要间断分布于小江断裂以西的川滇菱形块体和红河断裂以南的印支块体内部,另外在师宗-弥勒断裂附近也有局部分布。2)小江断裂带中、北段壳内低速层较为发育,以中段最为突出,最厚约达28km;南段在15~25km深度范围内存在明显的高速区。3)研究区的泊松比普遍较低(平均为0.24),呈不均匀分布,且横向变化剧烈,小江断裂带的泊松比总体呈北段较高、南段次之、中段低的分段特征;研究区壳内低速分布与泊松比间的对应关系不明显,大部分低速层似乎缺少发生部分熔融的条件,其地球物理结果的差异和不一致说明壳内低速层的变形演化机制及物理特性较为复杂。  相似文献   

7.
喜马拉雅山系的崛起、青藏高原的隆升以及与成山、成岩、成盆、成矿和成灾相关的深层过程是东亚乃至全球地球动力学研究中最为重要的科学事件.1958年始在柴达木盆地的地震反射探测与地壳、上地幔精细结构和大陆动力学研究开启了青藏高原地球内部研究的先河,半个世纪以来它影响并引导着我国这一科学领域的发展和前进.本文为纪念地壳与上地幔精细结构和大陆动力学在中国的诞生而作.柴达木盆地壳、幔精细结构地震反射探测结果表明:柴达木盆地的沉积层巨厚可达15~19 km,且存在着迴折波和不同类型与路径的多次波.地壳厚达50~52 km,且存在着高速梯度夹层和低速层.Moho界带为由高、低速相间的薄层束组构,且上地幔顶部纵波速度为8.1 km/s.从这一基点出发,对包括柴达木盆地在内的青藏高原地球深部与地球动力学研究中的几个科学问题进行了思考!为今后青藏高原地球物理深化研究的内涵和布局提出了初步的见解.  相似文献   

8.
利用从2009年到2013年在研究区域部署的50个流动观测台站及10个固定台站(中国数字地震台网CD-SN,四川地震台网)收集到的数据资料,采用接收函数线性反演的方法对研究区域的地壳上地幔S波速度结构进行研究,得出青藏高原东缘各台站的VS断面最显著的特征是速度很低,中地壳VS平均速度值为3.0~3.4km/s,上地幔VS速度值为4.0~ 4.5 km/s.地壳内普遍存在低速层,大部份低速层位于深度20~40 km的中地壳,在10~20 km的上地壳及40~60 km的下地壳中也出现少量的低速层.此外在青藏高原东缘南部地区也只有部份低速层出现.青藏高原东缘地壳流并不处处存在,而仅局限在有限区域,主要分布在中地壳内部(深20~40 km).当地壳流遇到刚强的四川盆地地壳及上地幔阻挡时出现拆分现象,即产生向上或向下的2~3个分支,向上的一支引起上地壳隆升形成陡峻的山峰,向下的一支使莫霍界面下沉引起地壳增厚.  相似文献   

9.
川滇地区速度结构的区域地震波形反演研究   总被引:22,自引:6,他引:22       下载免费PDF全文
利用云南数字地震台网的区域地震波形资料,对川滇地区的地壳上地幔速度结构进行了初步研究. 结果表明,川滇地区上地幔顶部P波速度较小,约78 km/s,P波速度在上地幔表现为较小的正速度梯度,S波在100~160 km深度范围内表现为弱低速层. 对于较短的观测路径,不同路径的平均P波和S波速度存在明显的横向变化. 与川滇菱形块体内部的速度结构不同,在块体边界附近可以观测到比较明显的上地壳低速层,我们认为它可能与块体边界的断裂带有关;川滇菱形块体内部存在的下地壳低速层,有利于块体向南滑动,而中上地壳没有明显低速结构,可能表明川滇菱形块体向南滑动的解耦深度至少在下地壳. 根据不同路径的反演结果,给出了云南中部地区地壳内部的平均速度结构.  相似文献   

10.
应用超声波反射-透射法,在最高压力为1.0 GPa(室温),最高温度为700℃(1.0 GPa)的条件下对新疆东准噶尔地区的卡拉麦里花岗岩带和野马泉岩体的典型花岗岩类岩石(碱长花岗岩、碱性花岗岩、花岗闪长岩、二长花岗岩和石英闪长岩)的纵波速度(VP)和横波速度(VS)进行了测量.结果显示,在常温、压力0.4~1.0 GPa条件下,东准噶尔地区花岗岩类岩石的VP和VS均随压力呈线性增加,说明在这个压力段岩石中的微裂隙已基本闭合.室温、1.0 GPa时花岗岩类岩石的VP是5.79~6.84 km·s-1,VS是3.26~3.85 km·s-1.依据压力与VP及压力与VS的线性关系,拟合得到常温常压下花岗岩类岩石的纵波和横波压力系数分别是0.1568~0.4078 km/(s·GPa)和0.0722~0.3271 km/(s·GPa),VP0和VS0分别是5.62~6.47 km·s-1和3.15~3.75 km·s-1.恒压1.0 GPa、室温到700℃条件下,花岗岩类岩石的VP和VS均随温度的升高呈线性降低,温度系数分别为(-3.41~-4.96)×10-4 km/(s·℃)和(-0.88~-3.22)×10-4 km/(s·℃).利用实验获得的花岗岩类岩石的VP0、VS0及温度系数和压力系数,结合东准噶尔地区的地热资料,建立了VP和VS随深度变化的剖面.将获得的VP和VS-深度剖面与该区地球物理探测结果对比,发现东准噶尔地区的碱长花岗岩、碱性花岗岩、二长花岗岩和部分花岗闪长岩的VP和VS与该区上地壳速度吻合很好,同时这几种岩石的平均泊松比也与上地壳泊松比一致,因此我们认为这几种类型的岩石是该区上地壳的重要组成部分.另外,石英闪长岩的VP和VS均符合中地壳的速度,可能为中地壳中的一种岩石.  相似文献   

11.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

12.
青藏高原东北缘地壳及上地幔顶部速度结构研究   总被引:1,自引:0,他引:1  
本文利用青藏高原东北缘71个固定台站与418个流动台站记录到的天然地震事件资料,采用双差层析成像方法对近震走时数据进行反演,获得了研究区高分辨率的三维P、S波速度结构和地震重定位结果.研究结果表明,本文给出的P、S波速度模型较已有的全球模型能更好的解释体波走时与面波相速度观测资料.松潘—甘孜和祁连构造带下方20~40 km深度范围表现为显著的P、S波低速异常,其中松潘—甘孜地块的壳内低速层可能与地壳部分熔融有关,而祁连构造带的壳内低速层则可能与地壳增厚有关.精定位后的岷漳6.7级地震和九寨沟7.0级地震震源深度都位于脆性的上地壳.两个地震的震源区地处不同块体的边界,均处在高、低速过渡带.震源区的壳内低速层可能处于部分熔融或易于蠕变的状态,脆性上地壳更容易积累应变能,从而导致地震的发生.  相似文献   

13.
本文以太行山为界将华北地区分为东西两部分,东部为河淮块体,西部为鄂尔多斯块体.利用最小二乘法,从混合路径基阶瑞利面波群速度频散提取两块体的纯路径频散,并反演其地壳、上地幔的层状结构.所得结表果明,两块体的面波频散和地壳、上地幔结构存在明显差异.东部的河淮块体地壳较薄,地壳内平均速度比西部的鄂尔多斯块体壳内平均速度约低0.13km/s,壳内20km深度左右出现低速层;而西部的块体壳内速度成层递增,未见低速层出现.两块体上地幔顶部速度均偏低,地幔低速层的埋藏深度基本相同.但西部块体地幔低速层厚,且比东部块体地幔低速层的速度约低0.3km/s.  相似文献   

14.
本研究使用中国数字地震台网(CDSN)(2009—2016)走时数据开展青藏高原地壳地震波速度三维层析成像研究,获得分辨率达到1°×1°×20 km的青藏高原地壳S波三维速度结构和泊松比分布.结果表明,分布在可可西里和羌塘北部的高钾质和钾质火山岩带,其上地壳到下地壳都存在S波波速扰动负异常和高泊松比.说明第三纪青藏高原隆升过程中,由于大陆碰撞使三叠纪的东昆仑缝合带重新破裂,造成大量壳幔混合熔融物质上涌和火山喷发,进而揭示了青藏高原北部新生代火山岩的存在与青藏高原的形成和隆升密切相关;青藏高原新生代裂谷位于中下地壳S波速度扰动负异常带的两侧,裂谷带之下的中下地壳泊松比减小到0.22以下.裂谷带之下中下地壳的S波速异常分布和泊松比值可以推断青藏高原新生代裂谷深达中地壳底部,这个推论与密度扰动三维成像的相关结论一致.青藏高原S波速度和泊松比在下地壳至壳幔边界随深度产生急剧变化,说明地壳内部发生了大规模的层间拆离和水平剪切;青藏高原东构造结之下泊松比高达0.29~0.33,S波速度扰动为负异常,推断东构造结下方地壳主要由坚硬的蛇纹石化橄榄岩组成;青藏高原中下地壳S波速负异常区范围大面积扩大,地壳底部几乎被S波速低值区全部覆盖.下地壳S波异常分布特点可能反映下地壳管道流的影响.  相似文献   

15.
古老变质岩系主要由前人称为“片麻岩系”和“结晶片岩系”两大套岩系组成。当地球成球之后,表面首先形成一层“基性焦壳”,在热封闭条件下,壳内产生花岗岩岩浆源,注入此原始地壳,并引起变质作用,形成基性正片麻岩地壳——第一层结晶地壳。然后,固体地壳发生形变和破裂,产生侵蚀、沉积,并伴随着岩浆活动、变质作用形成副片麻岩类——第二层结晶地壳。由此,本文以北京及其外围地区的古老变质岩系为依据,阐述了地球的形成和演化规律  相似文献   

16.
长白山火山区壳幔S波速度结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用面波层析成像和远震接收函数方法对长白山地区的地壳上地幔速度结构进行了研究。结果表明:长白山火山区附近存在岩石圈减薄、上地幔软流圈增厚以及上地幔S波速度降低等与上地幔高温物质有关的现象,它表明长白山的岩浆系统一直延伸到上地幔软流圈范围。天池火山区地壳内部存在明显的S波低速层,在离天池火山口较近的WQD台附近,低速层顶部埋深约8km,厚度近20km,S波最小速度约2.2km/s。在距离天池火山北部50km的EDO台地壳中没有明显的低速层。火山区S波速度结构总体表现出距离天池越近,地壳的V_P/V_S越大,低速层的厚度和幅度增加的特征,表明天池火山口附近地壳内部存在高温物质或岩浆囊。CBS台站不同方位的接收函数及反演结果表明,地表低速层厚度以及莫霍面深度存在随方位的变化。地表低速层在南部方向明显较厚,莫霍面深度在南部天池火山口方向存在小幅度抬升。CBS台站附近特殊的近地表速度结构可能是该台站记录的火山地震波形主频较低的主要因素。天池火山口附近莫霍面的小幅度抬升意味着存在与火山作用有关的壳幔物质交换通道  相似文献   

17.
利用2010年布设在西藏南迦巴瓦构造结的郎嘎、崩嘎、直白和拉格四个宽频地震台所观测到的近5个月的地震记录,采用时间域迭代反褶积技术处理得到接收函数,通过筛选多条相近震中距和反方位角的高质量接收函数求取其叠加平均.对大地电磁数据做Rhoplus分析处理得到视电阻率和相位曲线.利用单台接收函数和相同位置的大地电磁视电阻率和相位联合反演地下一维壳幔结构.联合反演采用遗传算法,并通过权衡图分析大地电磁和地震数据的兼容性.理论值和实测值的对比显示两种数据能同时得到较好拟合.联合反演结果表明:(1)中上地壳为9 km至14 km厚的高阻高速层覆盖于低阻低速层之上的结构,中地壳低阻低速层可能与深部流体和局部熔融共同作用有关.(2)下地壳存在最厚达20 km的高导的壳幔过渡层,波速在4 km/s左右;上地幔约130 km至150 km以下存在软流圈.(3)上地壳的高阻高速层解释为多雄拉组混合岩化角闪岩相变质岩,而直白台所显示的低阻低速层与高压麻粒岩的少量部分熔融有关,可能源于壳幔过渡带镁铁质岩石的相变或更深处幔源岩浆底侵作用的产物.  相似文献   

18.
基于南海北部大陆边缘珠江口—琼东南盆地深水区实施的14条近垂直深反射地震探测叠加速度谱,利用Dix公式将叠加速度剖面转换为地壳层速度剖面,并利用时深转换方法构建了深度域地壳层速度模型,综合各地壳速度剖面分析了南海北部大陆边缘珠江口与琼东南盆地不同深度层次的P波速度变化趋势以及地壳几何分层特征.结果表明,琼东南盆地区可分为4~8 km沉积层(VP为1.7~4.7 km/s)、4~10 km厚的上地壳层(VP为5.2~6.3 km/s)、5 km〗左右的下地壳层(VP为6.4~7.0 km/s)以及2~6 km厚的高速下地壳底层(VP>7.0 km/s).VP>7.0 km/s下地壳高速层的存在被认为是岩石圈伸展、下地壳底部底辟构造或者是残存的原始华夏下地壳基性层的地震学指示;综合研究区地球物理探测成果构建了跨越华南大陆与南海北部陆坡区剖面莫霍和岩石圈底界图像,揭示出岩石圈上地幔在华南大陆与南海北部大陆边缘的减薄特征.  相似文献   

19.
赵珠  曾融生 《地震学报》1992,14(7):573-579
利用西藏高原及其邻区150个地震,西藏台网、四川台网、世界标准台网及在西藏布设的流动台网的 P 波和 S 波观测资料,得出了该地区的地壳和上地幔的 P 波以及 S 波的速度模型:(1)地壳平均厚度70km,可分为明显的两层.上层厚16km,P 波速度5.55km/s,S 波3.25km/s;下层厚54km,P 波速度6.52km/s,S 波3.76km/s;(2)上地幔顶层 P 波速度7.97m/s,S 波4.55km/s.140km 处出现低速层,层厚约55——62km.低速层下的正速度梯度与地幔顶部盖层相差无几.   相似文献   

20.
广东省两类不同成因类型花岗岩磁化率各向异性研究表明:Ⅰ型花岗岩的磁化率的数值较大,一致性较好;各向异性度比较小,磁化率椭球为纯压扁型.S型花岗岩的磁化率数值普遍较小,一致性较差;各向异性度比较大,磁化率椭球以兼具压扁型和拉长型为特征;岩体内部两种磁化率椭球(压扁型和拉长型)的3个主轴的方向具有较好的一致性.结合花岗岩的野外地质特征,作者认为,S型花岗岩在形成过程中受到了板块内部强烈的挤压和剪切作用,不同类型的源岩在强烈的挤压作用下局部地带发生破裂,发育了大规模的剪切推覆作用,在剪切热的作用下源岩物质被改造形成S型花岗岩;Ⅰ型花岗岩则是原始岩浆侵入到地壳上部形成,其形成的构造背景与当时板块的B型俯冲有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号