首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
Stable carbon isotopes were used together with molecular markers to constrain genetic relationships between sandstone extracts and potential source rocks in the pre-Tertiary in the Huanghua Depression, North China. Comparison of the extracts from Permo-Carboniferous terrigenous mudstones and Ordovician marine carbonates indicated that their prominent differences are in stable carbon isotopes, molecular markers and thermal maturity. Although the extracts of the Mesozoic and Lower Permian Xiashihezi Formation sandstones have some similar iso-topic characteristics, molecular markers data provide a good correlation between the Upper Jurassic-Lower Cretaceous oils and the Upper Carboniferous Taiyuan Formation mudstones, and between the Lower Permian Xiashihezi Formation oils and the Lower Permian mudstones. The results showed that the Upper Jurassic-Lower Cretaceous sandstone oils were derived chiefly from the Upper Carboniferous Taiyuan Formation terrigenous mudstones and that the Lower Permian Xiashihezi Formation oils were sourced from the Lower Permian Shanxi Formation and Xiashihezi Formation terrigenous mudstones.  相似文献   

2.
Well Zheng-1 is located in the combined area of the central uplift and the north Tianshan piedmont depression in the Junggar Basin. Two oil-bearing beds are recognized at 4788–4797 m of the Lower Cretaceous Tugulu Formation (K1tg) and 4808.5–4812.5 m of the Lower Jurassic Sangonghe Formation (J1s). The geochemical characteristics of family composition, carbon isotopic composition, saturated hydrocarbons, sterane and terpane biomarkers and carotane of two crude oils are described in this paper. The results show that the geochemical characteristics of the two crude oils are basically similar to each other, indicating they were all derived mainly from the high mature, brine, algae-rich lake facies sediments. Oil-source correlation revealed that crude oils of the two beds were derived mainly from the source rocks of Permian and mixed by the oil derived from the source rocks of Jurassic and Triassic. This is consistent with the geological background with several sets of source rocks in the area studied.  相似文献   

3.
In the Yongjin oilfield of southern Junggar Basin, many wells have been drilled to produce industrial oils. Based on the analysis of fluid inclusions in the reservoirs, in combination with the geological and thermal evolution, the charge history in this area has been studied. The results indicate that the Jurassic Formation and Cretaceous Formation reservoirs contain abundant oil and gas inclusions, and four types of fluid inclusions have been distinguished. According to the homogenization temperatures of the fluid inclusions, the hydrocarbons charged the Cretaceous Formation for two periods, one ranges from the Late Cretaceous period to the Eogene period, and the other ranges from the Neocene period to the present. The oil filling history is correlated with the oil source correlation analysis, which is controlled by the movement of the Che-Mo plaeo uplift. Overall, oil accumulation is characterized by the superposition of two sets of source rocks for two stages in the Shawan depression.  相似文献   

4.
Three Schizolepis species collected from the Lower Cretaceous layer of the Huolinhe Basin,Inner Mongolia,China are described.These fossils are Schizolepis longipetiolus Xu XH et Sun BN sp.nov.,which is a new species,Schizolepis cf.heilongjiangensis Zheng et Zhang,and Schizolepis neimengensis Deng.The new species is a well-preserved female cone,slender and cylindrical in shape.The seed–scale complexes have long petioles and are arranged on the cone axis loosely and helically.The seed scales are divided into two lobes from the base.Each lobe is semicircular or elongate ligulate in shape,widest at the middle or the lower middle part,with an obtuse or bluntly pointed apex.The inner margin is almost straight and the outer margin is strongly arched.On the surface of the lobe,there are longitudinal and somewhat radial striations from the base to the margin.The seed is borne on the adaxial surface at the base or middle of each lobe.Schizolepis was established in 1847,and,although more than twenty species have been discovered and reported,its phylogenetic position is controversial because of the imperfection of fossils.Most authors have considered there to be a close evolutionary relationship between Schizolepis and extant Pinaceae.Here,we analyze characteristics and compare Schizolepis with Picea crassifolia Kom,which is morphologically most similar to Schizolepis.The results indicate that the genus probably has a distant evolutionary relationship with extant Pinaceae.A detailed statistical analysis of the global paleogeographic distribution of Schizolepis showed that all the fossils of this genus appeared in strata ranging from the Upper Triassic to the Lower Cretaceous in the North Hemisphere,being rare in the Upper Triassic and Lower Jurassic,but being very common from the Middle Jurassic to the Lower Cretaceous,and particularly abundant in the Lower Cretaceous.According to the statistical results,we speculate that the genus originated in Europe in the Late Triassic then spread from Europe to Asia between the Late Triassic and the Late Jurassic.In the Early Cretaceous most species existed in China’s three northeastern Provinces and the Inner Mongolia Autonomous Region and adjacent areas.Combining the paleogeographic distribution of the genus with ancient climatic factors,we deduced that Schizolepis began to decline and became extinct in the Early Cretaceous,and the reason for its extinction is closely related to the icehouse climate during the Early Cretaceous.  相似文献   

5.
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatu  相似文献   

6.
Oil group separation, gas chromatography–mass spectrometry analysis of saturated hydrocarbons, carbon isotope analysis of fractions and tests on trace elements were all carried out to determine the origin of shallow Jurassic heavy oils in the northwestern margin of the Junggar Basin, northwestern China. Results showed that all the crude oils had been subjected to different degrees of biodegradation, on an order ranging from PM 6 to 9, which yielded many unresolved complex mixtures (UCM) and formed a huge spike in the mass chromatogram (M/Z = 85). Two heavy oils from the Karamay area underwent slight biodegradation, characterized by the consistent ratios of biomarker parameters. C21/C23 and C23/H of the two samples were 0.81 and 0.85, while G/H, C27/C29 and C28/C29 were 0.38 and 0.40, 0.16 and 0.27, 0.87 and 0.86, respectively. The isomerization parameters of terpane and steranes were 0.50–0.53, and 0.48–0.49, respectively. The above geochemical indices indicated that the crude oils in the study area were in the marginally mature stage. The parent materials were a mixture, consisting of bacteria, algae and some higher plants, formed under reducing depositional conditions, which is in agreement with the source rocks of the Fengcheng Formation in the Mahu depression. The carbon isotopic compositions of saturated hydrocarbon, aromatic hydrocarbon, NSO and asphaltene were ?31‰? to ?30.3‰, ?29.5‰ to ?29.03‰, ?29.4‰ to ?28.78‰ and ?28.62‰ to ?28.61‰, respectively. These findings are in agreement with the light carbon isotope of kerogen from the lower Permian Fengcheng Formation. Furthermore, V/Ni and Cr/Mo of all the crude oils were 0.01 to 0.032, 0.837 to 10.649, which is in good agreement with the ratios of the corresponding elements of the extracts from the Fengcheng Fm. carbonate source rock. As a result, a two–stage formation model was established: (1) the oil generated from the carbonate source rocks of the Fengcheng Formation migrated to the Carboniferous, Permian and Triassic traps during the Late Triassic, forming the primary oil reservoirs; (2) during the Late Jurassic period, the intense tectonic activity of Yanshan Episode II resulted in the readjustment of early deep primary reservoirs, the escaped oils gradually migrating to the shallow Jurassic reservoir through cross-cutting faults, unconformities and sand body layers. The oils then finally formed secondary heavy oil reservoirs, due to long–term biodegradation in the later stage. Therefore, joint methods of organic, isotopic and element geochemistry should be extensively applied in order to confirm the source of biodegradation oils.  相似文献   

7.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

8.
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9–1.0 Ga and ca. 420–440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484–383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310–254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298–269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298–246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.  相似文献   

9.
The Lower Yangtze region is one of the important marine sedimentation areas of oil and gas distribution in southern China,for its favorable source rocks,reservoirs and covers.However,the intense tectonic movements and complex hydrocarbon generation process made it highly impossible to form large-sized oil and gas reservoirs.So it was divided to different hydrocarbon-bearing preservation units in oil-gas exploration.Recent study shows that the Permian and Lower Triassic source rocks in the Lower Yangtze region are complicated in lithology.The hydrocarbon generation potential of limestone there is low while argillaceous source rocks are overall of high abundance with excellent organic types,now in the process of hydrocarbon generation,so differences in high maturity influence the evaluation of organic matter abundance and type.Biomarker characteristics indicate a reductive environment.n-alkanes are marked by a single peak,with no odd-even predominance.The composition and distribution of the carbon numbers of n-alkanes,and the high abundance of long-chain tricyclic terpanes are indicative of marine sedi-mentation.The high contents of pregnane,homopregnane,rearranged hopane suggest that the source rocks are of high maturity.There is a good linear correlation between methylphenanthrene index and vitrinite reflectance.The correlation of oil-source rocks indicated that the oil of Well HT-3 may come from the Permian Longtan Formation in the Huangqiao area,the oil of Wells Rong-2 and Juping-1 came from the Lower Triassic Qinglong Formation in the Jurong area.The exploration here is promising in those different source rocks which all have great potential in hy-drocarbon generating,and oil and gas were produced in the late stage of hydrocarbon generation.  相似文献   

10.
The stratigraphic division and sequence of the Upper Cretaceous sediments in eastern Heilongjiang Province,China,have been ambiguous and controversial,mainly due to a lack of biostratigraphically useful fossils and related radiometric dating.A new species of angiospermous fossil plant.Platanus heilongjiangensis sp.nov.,from Qitaihe in eastern Heilongjiang has been found in sediments conformably above which zircons from a rhyolitic tuff has been dated by U-Pb radiometric methods as 96.2± 1.7 Ma.indicating that the Upper Houshigou Formation is of Cenomanian age.This discovery not only provides new data to improve our stratigraphic understanding of the Houshigou Formation,but also shows that Platanus flourished in the early Late Cretaceous floras of the region.This new study also indicates active volcanism taking place in the eastern Heilongjiang region during the Cenomanian of the Late Cretaceous.  相似文献   

11.
准噶尔盆地腹部侏罗系油气成藏地球化学分析   总被引:8,自引:2,他引:6       下载免费PDF全文
依据生物标志物的分布和组成特征,准噶尔盆地腹部侏罗系三工河组的原油可以分为两类,庄1井和沙1井原油属于第一类,源于下二叠统风城组;南部征沙村地区征1井原油为第二类,源于中二叠统下乌尔禾组,也有侏罗系的贡献。根据流体包裹体均一化温度分布,结合生排烃史与构造配置关系研究,认为征1井三工河组油藏主要成藏期是古近纪以来,油气来自于昌吉凹陷的下乌尔禾组和侏罗系烃源岩;而庄1井和沙1井三工河组油藏具有多源多期油气注入,早白垩世末至古近纪,油气来自于北部盆1井西凹陷风城组,古近纪构造调整以来,混入了来源于昌吉凹陷的油气。各口井原油含氮化合物的分布特征,证实了研究区侏罗系原油近期是从征1井向北运移的。  相似文献   

12.
川东南的构造演化可分成5个阶段:①晚震旦世抬升剥蚀阶段;②早古生代沉降阶段;③晚志留世—泥盆、石炭纪抬升剥蚀阶段;④二叠纪—晚白垩世沉降阶段;⑤晚白垩世—现今快速隆升阶段。震旦系灯影组—下古生界储层沥青与下寒武统和下志留统黑色泥岩之间地球化学特征的对比表明二者有着重要的联系,灯影组烃源来自下寒武统牛蹄塘组。丁山构造一直处于高部位,有利于油气聚集,丁山构造在晚白垩世前圈闭、封盖、储层及保存条件均较好,形成了古油藏。随着埋深的增大,古油藏裂解成古气藏。晚白垩世至今受喜马拉雅运动的影响,通天断层发育,保存条件变差,导致天然气的逸散。丁山构造的油气成藏过程可分为古油藏→古油藏裂解形成古气藏→古气藏破坏三大过程。  相似文献   

13.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

14.
准噶尔盆地腹部油气充注与再次运移研究   总被引:21,自引:5,他引:16  
邹华耀  郝芳  张柏桥  陈斌 《地质科学》2005,40(4):499-509
准噶尔盆地为一个经历多期构造运动的叠合型盆地。盆地腹部油气藏形成与演化是一个受多源、多期次油气充注与再次调整的复杂过程。采用烃源岩生烃史正演模拟与油气藏地质、地球化学反演分析相互验证的方法,表明腹部油气运聚可以分为早期、晚期和后期油气充注,即:早白垩世前的早期原油充注阶段,原油主要来自于下二叠统风城组烃源岩;晚白垩世以原油充注为主的晚期充注阶段,原油主要来源于上二叠统下乌尔禾组烃源岩;古近纪以来以天然气充注为主的后期充注阶段,天然气来自于风城组和下乌尔禾组烃源岩高过成熟阶段的产物。受喜马拉雅构造运动的影响,形成于中晚燕山期的腹部车莫古隆起发生掀斜作用,致使油气发生再次运移,调整后的腹部油气藏呈分散和小规模分布,油气藏类型由以构造圈闭为主变成以地层/岩性圈闭为主。  相似文献   

15.
通过分析输人模型的参数对输出结果的影响,可以确定影响烃源岩成熟度史模拟的敏感性参数.本文应用Easy% Ro化学动力学模型,以普光5井为例,对川东北地区各期构造运动剥蚀厚度、古地表温度和古地温梯度进行了相关的敏感性分析.分析结果表明:研究区下寒武统、下志留统、下二叠统和上二叠统烃源岩现今成熟度状态完全受控于燕山运动晚幕...  相似文献   

16.
The geochemical characteristics of 16 oils/condensates/seep oil/oil shows (collectively called oils) from the Eastern Papuan Basin (EPB) and one seep oil from the Western Papuan Basin (WPB) are integrated with data from previous studies of oils, fluid inclusion oils and solid bitumens from the EPB and WPB, Papua New Guinea. The combined set of samples can be divided in two major families of hydrocarbons. The Family A oils, mostly occurring in the WPB region, were generated from clay rich marine source rocks, containing predominantly terrigenous higher plant derived organic matter (OM) deposited in a sub-oxic to oxic environment. Source rock(s) for Family A oils are likely to be of Middle to Upper Jurassic, e.g., the Upper Jurassic Imburu Formation. The Family B oils, distributed mainly in the EPB region, were generated from Cretaceous or younger marine carbonate source rock(s) deposited under anoxic to sub-oxic conditions, and containing predominantly prokaryotic OM with some terrigenous higher plant inputs. The EPB natural gases analyzed in this study may be co-genetic to the co-occurring Family B oils in the EPB. Both Family A and B oils were generated at similar thermal maturities of 1.0–1.3% vitrinite reflectance equivalent. Although no source interval to date has been firmly identified in the EPB, post-Jurassic strata are a viable option, because (1) Late Cretaceous and Paleogene carbonate and clastic marine sediments including possible source lithologies are present, and (2) this section of the Papuan Basin sustained rapid sedimentation and tectonic loading, particularly in the Cenozoic.  相似文献   

17.
准噶尔盆地西北缘南部红车断裂带- 车排子凸起油气藏众多,原油物理化学性质和地球化学特征十分复杂,原油类型及其来源长期存在很大争议。本文在准噶尔盆地不同时代烃源岩生成原油典型地球化学特征与主要油源判识指标归纳总结的基础上,对红车断裂带- 车排子凸起原油地球化学特征和来源进行系统分析研究,将该区域原油分为五类,其中三类原油分别来源于二叠系湖相烃源岩、中—下侏罗统煤系烃源岩、古近系安集海河组湖相烃源岩,另外两类为混合原油,分别为来源于二叠系湖相烃源岩的生物降解稠油与中—下侏罗统煤系烃源岩生成的正常原油和古近系湖相烃源岩生成的正常原油的混合原油。红车断裂带石炭系—白垩系油藏原油主要来源于沙湾凹陷二叠系湖相烃源岩,车排子凸起东北部春风油田稠油来源于沙湾凹陷二叠系湖相烃源岩;车排子凸起东侧- 红车断裂带西侧新近系沙湾组油藏轻质原油来源于四棵树凹陷古近系湖相烃源岩;车排子凸起中部春光油田白垩系—古近系油藏稠油为二叠系来源稠油和侏罗系正常原油的混合原油,新近系沙湾组油藏稠油为二叠系来源稠油与新近系正常原油的混合原油;车排子凸起西部石炭系—古近系油藏轻质原油来源于四棵树凹陷中—下侏罗统煤系烃源岩,而新近系沙湾组油藏轻质原油来源于四棵树凹陷古近系湖相烃源岩。本文对准噶尔盆地西北缘南部地区油气藏成藏研究及区域油气勘探决策具有重要参考作用。  相似文献   

18.
East Siberia comprises three petroleum provinces—Lena-Tunguska, Lena-Vilyuy, and Yenisey-Anabar—that occupy the area of the Siberian craton. Petroleum has been generated and has accumulated in Precambrian rifts beneath the sedimentary basins and, more importantly, within the section of the basin itself. The platformal deposits of the basins extend beneath overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian province on the west. Permafrost and gas hydrate deposits are present throughout most of East Siberia.

In the Lena-Tunguska province, rifts that developed during Riphean time are filled by thick sedimentary rocks, in which petroleum deposits have formed. In Early Cambrian time a barrier reef extended across the East Siberian craton from southeast to northwest. A lagoon to the west of this reef was the site of thick rhythmic salt deposits, which are the main seal for petroleum in the province. The sedimentary section of the platform cover ranges in age from Late Proterozoic to Permian. More than 25 oil and gas fields have been discovered in the province, all in Riphean through Lower Cambrian rocks.

The Lena-Vilyuy province includes the Vilyuy basin and the Cis-Verkhoyansk foredeep. During Middle Devonian time, a rift formed along the axis of what was to become the Vilyuy basin. This rift is filled by Upper Devonian and Lower Carboniferous basalt, elastics, carbonates, and evaporites. During this rift stage the region that was to become the Cis-Verkhoyansk foredeep was an open geosynclinal sea. The sedimentary cover consists of Permian, coal-bearing sedimentary rocks as well as elastics from the Lower Triassic, Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, the latter only in the Vilyuy basin. In the Lena-Vilyuy petroleum province as many as nine gas and gas-condensate fields have been discovered.

The Yenisey-Anabar province is largely an extension of the West Siberian petroleum province. Permian sedimentary rocks are present only in the east, where they consist of elastics and some salt. The Triassic, Jurassic, and Cretaceous each are represented by thick clastic deposits. Total thickness of the sedimentary cover is up to 15 km on the west and 8 km on the east. Twelve gas and gas-condensate fields have been discovered in the western part of the province.  相似文献   

19.
含油气盆地超剥带的勘探以重质油-油砂为主。在准噶尔盆地西北缘超剥带的中生代油砂中发现了轻质油,报道了其基本特征与成藏模式,并探讨了勘探意义。结果表明,轻质油呈黄绿色荧光,与呈黄褐色荧光的重质油共生。油砂连续抽提发现,重质油充注在前(颗粒吸附烃/包裹体烃),轻质油充注在后(孔隙游离烃),油源均来自研究区玛湖凹陷下二叠统风城组,典型生标特征为Pr/Ph值小于1,伽马腊烷/C_(30)藿烷为0.43~0.82,C_(20)、C_(21)、C_(23)三环萜烷呈上升型分布。油砂无机地球化学研究发现,2期原油充注明显,形成了2期方解石胶结物,早期MnO和FeO含量在1%~1.5%之间,晚期大于1.5%。白垩纪前,风城组生源成熟油在充注过程中遭受降解,形成重质油-油砂;白垩纪至今,风城组生源高熟轻质油沿横断裂直接运移至超剥带,在断裂"纵横交叉"之处最富集。据此认为,研究区横断裂沿线是这类轻质原油勘探值得考虑的领域。超剥带的勘探可能不仅局限于传统认为的重质油-油砂,若存在有利的成藏条件,亦有可能形成轻质油气的聚集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号