首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
首次通过2008-2009年在西北地中海和东地中海海域投放的两台Bio-Argo浮标的观测数据,分析与研究了该海区黄色物质次表层极大值的季节变化规律.研究表明次表层黄色物质在夏季开始爆发,伴随着叶绿素a浓度的逐渐降低;到冬季在强烈的垂向混合作用下结束.且黄色物质极大值的深度与叶绿素a浓度极大值(DCM)的深度基本一致,说明虽然黄色物质与浮游植物之间并不存在直接联系,但浮游植物的降解是黄色物质的主要来源.文中推测,可能由于该海区浮游植物与微生物的强耦合,导致了黄色物质与叶绿素a之间存在明显的反变关系.  相似文献   

2.
We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements.  相似文献   

3.
Nutrients, chlorophyll-a, particulate organic carbon (POC), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during three seasonal cruises from 2003 to 2005. In spring and autumn, relatively high concentrations of nitrate (2.6~12.4 μmol kg-1) and phosphate (0.17~0.61 μmol kg-1) were observed in the surface waters in the western part of the study area because of the large supply of nutrients from deep waters by vertical mixing. The surface concentrations of nitrate and phosphate in summer were much lower than those in spring and autumn, which is ascribed to a reduced nutrient supply from the deep waters in summer because of surface layer stratification. While previous studies indicate that upwellings of the Kuroshio Current and the Changjiang (Yangtze River) are main sources of nutrients in the ECS, these two inputs seem not to have contributed significantly to the build-up of nutrients in the northern ECS during the time of this study. The lower nitrate:phosphate (N:P) ratio in the surface waters and the positive correlation between the surface N:P ratio and nitrate concentration indicate that nitrate acts as a main nutrient limiting phytoplankton growth in the northern ECS, contrary to previous reports of phosphate-limited phytoplankton growth in the ECS. This difference arises because most surface water nutrients are supplied by vertical mixing from deep waters with low N:P ratios and are not directly influenced by the Changjiang, which has a high N:P ratio. Surface chlorophyll-a levels showed large seasonal variation, with high concentrations (0.38~4.14 mg m-3) in spring and autumn and low concentrations (0.22~1.05 mg m-3) in summer. The surface distribution of chlorophyll-a coincided fairly well with that of nitrate in the northern ECS, implying that nitrate is an important nutrient controlling phytoplankton biomass. The POC:chlorophyll-a ratio was 4~6 times higher in summer than in spring and autumn, presumably because of the high summer phytoplankton death rate caused by nutrient depletion in the surface waters.  相似文献   

4.
利用 SeaWiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品,研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明,南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg. m-3)出现在弱风、高海表温度(>28 °C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)出现在有较强风速和较低海表温度(<27 °C)的冬季。线性回归分析显示,南海叶绿素质量浓度同海表温度呈显著负相关关系。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异,但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见,温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标,从而可能调控营养盐及浮游植物的变化。  相似文献   

5.
利用 Sea WiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品, 研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明, 南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg·m-3)出现在弱风高海表温度(>28°C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)通常出现在有较强风速和较低海表温度(<27°C)的冬季。线性回归分析显示, 南海叶绿素质量浓度同海表温度呈显著负相关。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异, 但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见, 温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标, 从而可能调控营养盐及浮游植物的变化。  相似文献   

6.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

7.
Production of chromophoric dissolved organic matter by Sargasso Sea microbes   总被引:13,自引:0,他引:13  
Time series of chromophoric dissolved organic matter (CDOM) light absorption coefficients indicate a local origin for a large fraction of the CDOM in the upper water column of the Sargasso Sea. In the present study, we demonstrate that CDOM is produced in bacterial culture experiments using Sargasso Sea water and naturally occurring microbial assemblages. Seawater cultures were prepared and grown at in situ temperatures in the dark for periods of weeks. Selected cultures were treated with amendments including inorganic nutrients, glucose, phytoplankton exudates, and zooplankton excretia. In all experiments, when bacterial biomass increased, CDOM increased during the first week of the experiment, followed by a decrease over a longer period of time. Cultures amended with both glucose and inorganic nitrogen and phosphorus produced more CDOM than controls or cultures amended with glucose or inorganic nutrients alone. However, when complex DOM substrates (derived from phytoplankton or zooplankton cultures) were added to seawater cultures, there was a net accumulation of CDOM over the course of the experiments. These data suggest that, in addition to microbial growth, the quality of the substrate plays an important role in net CDOM production. ‘New’ CDOM produced in culture was spectroscopically similar to CDOM appearing below the surface during summer stratification. The results of the present study support a new paradigm for CDOM in the open ocean, which allows for local origin and significant dynamics. Appreciation of CDOM dynamics will, in turn, add to our understanding of microbial productivity, photochemical rate processes, and ultraviolet radiation availability in the global ocean.  相似文献   

8.
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and the  相似文献   

9.
INTRODUCTIONTheXiangshanBayisoneoftheimportantmarineaquaculturebasesinZhejiang.Since1982,themultiplicationreleasingexperimentsofPenaeusorzentalisKishinouyelarvalhavebeencarriedoutinthebay.Thestudyonthephytoplankton,chlaconcentrationandproductivityandthelifepatternofreleasedlarvaeprawnintheXiangshanBayisoneoftheimportanttasksoftheNationalKeyProject--AquaticExploitationTechniqueResearchinLakesandHarbors.TherearemanylargebaysandharborsalongChina'scoast,butonlyafewobservationshavebeend…  相似文献   

10.
Seasonal changes in oceanographic conditions related to primary productivity was investigated in the southwestern Okhotsk Sea during non-iced seasons, using the observation data conducted in 2000∼2006. Based on hydrographic characteristics, the studied area could be classified into two regions, the Coastal Region which is influenced under the Soya Warm Current and the Forerunner Water of the Soya Warm Current, and the Offshore Region where the Intermediate Cold Water was located in the subsurface layer. This study is the first report on seasonal change of nutrient and chlorophyll a concentrations in the offshore region of the southwestern Okhotsk Sea. Variability of concentrations of chlorophyll a and nutrients is temporally and regionally high in the Coastal Region. The maximum chlorophyll a concentration in April was observed at the surface layer of both regions. The most remarkable feature on the vertical structure in the Offshore Region was the consistent existence of the Intermediate Cold Water and the development of seasonal thermocline in the subsurface layer during summer and autumn. The stratification formed within the euphotic zone in the Offshore Region resulted in the formation of the subsurface chlorophyll a maximum (SCM) from May to October. Throughout the research period, although less amplitude of nutrients at the surface was observed in the Coastal Region than that in the Offshore Region, comparable amplitude of chlorophyll a concentration was observed between regions. These results suggested differences of environmental conditions for primary production between the two regions. Depending on the presence of SCM, relationships between chlorophyll a concentration at the sea surface and chlorophyll a standing stock within the euphotic layer were different. At most stations with SCM, the surface chlorophyll a concentration was lower than 0.6 mg m-3. This suggests that the presence of SCM and the chlorophyll a standing stock within the euphotic layer may be estimated using the surface chlorophyll a concentration from spring to autumn in the studied area.  相似文献   

11.
利用日本以南海域调查资料,对表层叶绿素a含量(SC)、真光层内叶绿素a积分值(IC)及初级生产力(PP)之间的相关关系作检验。研究表明:在高生产力海域SC、IC和PP之间存在显著的相关性,SC可以作为水域中浮游植物现存量及其生产状况的指标。在低生产力海域SC、IC和PP三者之间均不相关。文章分析了SC、IC和PP三者相关性差异的原因,指出用SC作为浮游植物现存量及其生产力指标时应持谨慎态度。  相似文献   

12.
Although plankton bloom incidents in the upper Gulf of Thailand (UGoT) have been reported, no dynamic investigation of the phenomenon has been conducted. To address this need, a simple pelagic ecosystem model coupled with the Princeton Ocean Model (POM) was employed to investigate seasonal variations in surface chlorophyll-a (chl-a) distributions to clarify phytoplankton dynamics in this area. The results revealed patterns of seasonal chl-a distribution that correspond to local wind, water movement and river discharge. High chl-a patchiness was found to be concentrated near the western coast following westward circulation near the northern coast developed during the northeast monsoon. During the southwest monsoon high concentrations were observed around the northeastern coast due to eastward flow. The simulated results could explain the seasonal shifting of phytoplankton blooms, which typically arise along the western and eastern coasts during the northeast and the southwest monsoons, respectively. Sensitivity analyses of simulated chl-a distributions demonstrate that water stability, including wind-induced vertical currents and mixing, plays significant roles in controlling phytoplankton growth. Nutrients in the water column will not stimulate strong plankton blooms unless upwelling develops or vertical diffusivity is low. This finding suggests an alternative aspect of the mechanism of phytoplankton bloom in this region.  相似文献   

13.
This study describes the main seasonal stages in oceanographic conditions and phytoplankton off La Coruña (Galicia, NW Spain), during 1991 and 1992, based mainly on monthly cruises near the coast. Upwelling conditions were studied using an upwelling index calculated from local winds. The Galician coast is affected by a long upwelling season for most of the year. The upwelling pulses interact with the thermal stratification-mixing cycle of surface waters, primarily affecting the dynamics of phytoplankton. In addition, the presence of water masses of different salinity in the subsurface layers changes the stratification of the water column. The less-saline North Atlantic Central Water (NACW) was normally associated with upwelling events during summer. However, on several occasions during the study, the presence of Eastern North Atlantic Water (ENAW) of subtropical origin was observed with salinities up to 36·22 and temperatures between 13 and 14 °C.Observations were grouped into five main stages related to the degree of surface stratification and characteristics of phytoplankton communities. These stages were recognized in both annual cycles, and were termed: winter mixing, spring and autumn blooms, summer upwelling, thermal stratification and special events (red tides and downwelling). A homogeneous water column was the main characteristic of the winter stage, with high nutrient concentrations and low phytoplankton biomass. Eastern North Atlantic Water appeared at the end of this stage, which lasted from November to February. The spring and autumn blooms occurred along with weak thermohaline gradients at the surface, producing high phytoplankton concentrations. Favourable upwelling conditions and the presence of ENAW in a subsurface layer were the factors that most likely induced earlier blooms, while thermal gradients developed at the surface could have been more important for later blooms. Upwelling events during summer were related to a reduction in the depth of the surface mixed layer as the pycnocline moved upwards, and can produce significant phytoplankton accumulations. These summer blooms interrupted the thermal stratification stage, characterized by low nutrient and phytoplankton concentrations at the surface. The dominant phytoplankton in the study was composed mainly of diatoms, especially during blooms. However, a proliferation of red-tide dinoflagellates was observed along with weak upwelling conditions in late summer. Also in late summer, strong downwelling conditions caused the accumulation of warmer shelf waters inshore, inducing the sinking of particulate matter produced at the surface.  相似文献   

14.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

15.
The cycle of the phytoplankton in a coastal water is controlled by the biological processes, solar radiation, water temperature and physical transport processes. A three-dimensional ecosystem dynamic model is adopted in this study to investigate the influence of different physical factors on the variation of phytoplankton and nutrients in the Bohai Sea. The simulation is carried out for the year 1982. The simulated annual cycle of the primary production and nutrients are in reasonable agreement with the observations in the pattern. Vertical mixing can both affect the vertical transportation of nutrients and horizontal distribution of primary production. In winter the vertical distribution of nutrients is homogeneous because of the intensive mixing, while in summer there is a high value of nutrients in the depth about 15 m due to the stratification. The high primary production plague and the weak mixing center is positional correspondence. The production of phytoplankton is sensitive to the photosynthetically active radiation, which is strongly influenced by the transparency. The increase of the transparency can promote the production in spring and autumn significantly, but has little effect on the production in summer. The change of the transparency can both affect the occurrence time and the amplitude of the phytoplankton bloom dramatically. Horizontal advection does not affect the variation trend of the annual cycle of chlorophyll-a, but does affect the relative magnitude of the phytoplankton bloom, especially in summer. Horizontal advection can dramatically alter the horizontal distribution of chlorophyll-a. The maximum concentration of chlorophyll-a without horizontal advection in summer is twice as high than that with advection and the high chlorophyll-a areas locate along the coast. The river discharge only has regional influence on the ecosystem. The Huanghe River with high nitrate concentration influ-ences the annual cycle of nitrogen of the Laizhou Bay significantly.  相似文献   

16.
The seasonal patterns of nutrient (nitrate and silicic acid) and chlorophyll distributions in the Ross Sea are formulated by two independent methods. The first procedure compiles all available data from cruises from 1970 to the present and generates a three-dimensional grid for the months from November through February using an iterative difference-correction scheme. The second method uses a three-dimensional circulation model and the phytoplankton standing stock climatology to investigate the effects of currents and phytoplankton uptake on nutrient distributions. The two approaches produced similar results, although the circulation model produced distributions that were more variable in space due to its finer resolution. The nutrient distributions were characterized by elevated concentrations in early spring and gradual reductions to ca. 15 and 40 μM (nitrate and silicic acid, respectively) in summer. Nutrient depletion did not occur despite the favorable growth conditions (elevated macronutrient concentrations, strong vertical stratification) in summer, suggesting that an alternative limitation (such as by dissolved iron concentrations) occurs. Chlorophyll concentrations reached ca. 6 μg l−1 in December and declined thereafter. Seasonal primary production calculated from the nitrate deficits and the circulation model suggested that production was ca. 73 g C m−2, slightly lower but similar to other estimates using independent methods. Using the nutrient climatology, losses (vertical flux plus respiration) through Feb. 15 from the upper 100 m were ca. 50% of the seasonal production, and the rest of the organic production was removed after that date. Results also suggest that carbon export from the surface layer may vary significantly in space and time.  相似文献   

17.
Coloured dissolved organic matter (CDOM) plays a major role in marine photochemical and biological processes and its optical properties are known to affect the underwater light penetration. This paper highlights in situ optical estimation and satellite retrieval of CDOM in deciphering its temporal variations in coastal waters of the South Eastern Arabian Sea. The study accentuated the source of CDOM as terrigenous origin during monsoon, of in situ productions during pre-monsoon and during post-monsoon of autochthonous-allocthonous origin. The matchup analysis for in situ and MODIS Aqua retrieved Adg443 exhibited bias which decreased by incorporating the seasonal component. The study also identified degrading bloom of Noctiluca scintillans as the source for exceptionally high CDOM in the area during January and February. The study demands to incorporate seasonal components and phytoplankton abundance while assessing the performance of CDOM algorithms in optically complex coastal waters.  相似文献   

18.
基于观测的南海越南沿岸次表层涡旋   总被引:1,自引:0,他引:1  
In this study, subsurface eddies near the Vietnam coast of the South China Sea were observed with in situ observations, including Argo, CTD, XBT and some processed and quality controlled data. Based on temperature profiles from four Argo floats near the coast of Vietnam, a subsurface warm eddy was identified in spring and summer. The multi-year Argo and Global Temperature and Salinity Profile Programme(GTSPP) data were merged on a seasonal basis based on the data interpolating variational analysis(DIVA) method to reconstruct the three-dimensional temperature structure. There is a warm eddy in the central subsurface at 12.5°N, 111°E below300 m depth in spring, which does not exist in autumn and is weak in winter and summer. From CSIRO Atlas of Regional Seas(CARS) and Generalized Digital Environment Model(GDEM) reanalysis data, this subsurface warm eddy is also verified in spring.  相似文献   

19.
Satellite image studies and recent in situ sampling have identified conspicuous phytoplankton blooms during spring and summer along the Patagonia shelf-break front. The magnitudes and spectral characteristics of light absorption by total particulate matter (phytoplankton and detritus) and colored dissolved organic matter (CDOM) have been determined by spectrophotometry in that region for spring 2006 and late summer 2007 seasons. In spring, phytoplankton absorption was the dominant optical component of light absorption (60–85%), and CDOM showed variable and important contributions in summer (10–90%). However, there was a lack of correlation between phytoplankton biomass (chlorophyll-a concentration or [chl a]) and the non-algal compartment in both periods. A statistically significant difference was found between the two periods with respect to the CDOM spectral shape parameter (Scdom), with means of 0.015 (spring) and 0.012 nm?1 (summer). Nonetheless, the mean Scdm values, which describe the slope of detritus plus CDOM spectra, did not differ between the periods (average of 0.013 nm?1). Phytoplankton absorption values in this work showed deviations from mean parameterizations in previous studies, with respect to [chl a], as well as between the two study periods. In spring, despite the microplankton dominance, high specific absorption values and large dispersion were found (a*ph(440)=0.04±0.03 m2 mg [chl a]?1), which could be attributed to an important influence of photo-protector accessory pigments. In summer, deviations from general trends, with values of a*ph(440) even higher (0.09±0.02 m2 mg [chl a]?1), were due to the dominance of small cell sizes and also to accessory pigments. These results highlight the difficulty in deriving robust relationships between chlorophyll concentration and phytoplankton absorption coefficients regardless of the season period. The validity of a size parameter (Sf) derived from the absorption spectra has been demonstrated and was shown to describe the size structure of phytoplankton populations, independently of pigment concentration, with mean values of 0.41 in spring and 0.72 in summer. Our results emphasize the need for specific parameterization for the study region and seasonal sampling approach in order to model the inherent optical properties from water reflectance signatures.  相似文献   

20.
The results are presented from three hydrogrpahic surveys in April 1979 of a 40 × 50 km region of the Celtic Sea, centred at 7°W and 51°N, using a towed undulating sensor system. In the 512 days between Surveys 1 and 2, the seasonal thermocline was established, with surface to bottom temperature differences reaching 1.5°C, the average surface chlorophyll a level increased from ~ 1 to ~ 5.5 mg m?3 due mainly to the growth of diatoms, and the surface nitrate concentration decreased from 6 to 1 μM. The third survey was carried out after a further two days and, although surface properties changed little, there was a general deepening of the mixed layer due to stronger winds, and a further increase in the standing stock of phytoplankton.By applying appropriate techniques of horizontal spatial averaging, which took into account possible advective effects, a quantitative comparison was made of the changes at two positions in the survey area which showed significant differences in the rate of development of the phytoplankton population. A simple model of phytoplankton growth was then developed, based on calculations of eddy diffusivity, on measurements of rates of photosynthetic carbon assimilation, and on observations of carbon to chlorophyll ratios, subsurface light attenuation and inorganic nutrient levels. In the absence of any data on zooplankton populations, the loss of phytoplankton by grazing was left as a free parameter.The model was only partly successful in reproducing the observed changes in chlorophyll concentrations during the first 512 days and showed serious limitations for the subsequent 2 days. However, it emphasised several features of the dynamics of spring phytoplankton populations which require further experimental or observational investigation. These include more precise measurements of carbon to chlorophyll ratios and grazing pressure to which the model is sensitive over a rather narrow range (this has important implications in terms both of control by grazing and nutrient limitation), the potential significance of physiological photoadaptation by the plant cells in determining their vertical distribution, and the role of eddy diffusion across the developing thermocline in relation to the sinking of phytoplankton cells and the upward mixing of inorganic nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号