首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The accumulation of selenium in evaporation basins (or ponds) in the San Joaquin Valley, California is of a great concern due to its potential hazards to environments. In this study, the accumulation, speciation and concentrations of Se were examined in waters as well as sediments in a system of the evaporation ponds. A significant decrease in the total dissolved Se concentration in Cell 1 in which drainage water with higher Se concentration was pumped from Inlet Channels indicated that the immobilization of Se was active in the Cell 1 and resulted in the higher Se concentration in sediments compared to the terminal cell such as Cell 9. The percentage of reduced Se species such as selenite [Se(IV)] and org-Se of total Se in drainage waters was also found increased in Cell 1 compared to Inlet Channels. The total dissolved Se concentrations in water along flow paths from Cell 1 were relatively constant except for terminal cells such as Cells 9 and 10, which showed higher total dissolved Se concentrations due to evapoconcentration. The percentage of reduced Se forms of total Se was inversely proportional to the percentage of Se(VI) depending on the redox condition of evaporation ponds along the flow paths. Sequential extractions of Se species in sediments indicated that organic associated Se and elemental Se were prevalent forms in sediments in the ponds system. The higher concentrations of elemental Se and organic associated Se in sediments in Cell 1 indicated that the immobilization of Se was active in the sediments compared to Cell 9, while the percentage of both fractions of total Se in sediments in Cells 1 and 9 was relatively constant. The organic materials from algae might provide carbon sources for Se reduction and Se sink in sediments in its elemental and organic associated forms.  相似文献   

2.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

3.
The results of a study of the contribution of microbial metabolic products to total dissolved organic carbon (DOC) levels in coastal sediments are presented. The data indicate that acidic volatile compounds make up a substantial fraction of pore water DOC's in both oxic and anoxic pore waters of coastal marine sediments. Formic, acetic and butyric acids are the principal volatile species identified at levels exceeding 10 μM. Acid concentrations are up to five times higher in anoxic pore waters than in oxic waters. Volatile organic acids show promise as indicators of diagenetic processes in marine sediments and of the ecological succession of microorganisms, in particular.  相似文献   

4.
Geochemical analyses of lakebed and core sediments from Lake Sambe on the outskirts of Oda City in Shimane prefecture in southwestern Japan were carried out in order to assess the water quality and the concentration and distribution patterns of sixteen elements. The lake water showed a stratified condition with respect to dissolved O2, and As, Fe, and Mn concentrations in the bottom layers which increased in the summer. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements (P, Ca, Sc, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Sr, Zr, Pb, and Th), and total sulfur (TS). Elevated values of As, Zn, V, Fe, P, and TS were present in several layers of the upper cores (from 0 to 5 cm) and other surface sediments. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, fine-grained organic rich sediments, and post-depositional diagenetic remobilization. Moreover, correlations between the concentrations of trace metals and iron in the sediments suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur indicate that they were precipitated as Fe-sulfides. The average abundances of As, Pb, Zn, and Cu exceeded the lowest effect level and Interim Sediment Quality Guideline values that the New York State Department of Environmental Conservation and the Canadian Council of Ministers of the Environment determined to have moderate impact on aquatic organisms. In addition, concentrations of As and Zn exceeded the Coastal Ocean Sediment Database threshold value, indicating potentially toxic levels. Therefore, the presence of trace metals in the lake sediments may result in adverse effects on biota health.  相似文献   

5.
The Casamance estuary, on the coast of Senegal, is an inverse hypersaline estuary: salinity increases landward, and dry season salinity values are up to 172 psu due to the evaporation of seawater. Dissolved inorganic carbon (DIC) concentrations decreased landward as a negative linear function of salinity. Thermodynamic modelling and the absence of CaCO3 in the sediments indicate that this loss of DIC was not due to calcite precipitation in the main water body. The innermost, almost landlocked, waters contained high phytoplankton biomass (50–300 μg chl I?1) and high concentrations of allochthonous dissolved organic carbon. Photosynthetic uptake of DIC and subsequent particulate organic carbon sedimentation is proposed as hypothetical explanation of the relationship between DIC and salinity; localized overheating in shallow waters might also be involved.  相似文献   

6.
Since 1982, estimated amounts of 9,400 t, 15,000 kg, 720 kg and 105 kg of Si, Fe, As and Cs respectively have accumulated at the bottom of 18 evaporation ponds as part of the geothermal production cycle at Los Azufres. This accumulation is caused by precipitation of brine solutes during the evaporation of 10% of the total pond water volume before its re-injection into the reservoir. Extraction experiments with pond precipitates and geochemical simulations with the PHREEQC program indicate the high solubility of most precipitates under natural environmental conditions. The comparisons with the primary brine composition indicate that less than 1% of most dissolved brine solutes, except for Co, Cu, Mn, Pb, Ag, Fe and Si, are accumulated at the pond bottom. Arsenic has maximum values of 160 mg/kg in the pond sediments, and Mo, Hg and Tl also exceed international environmental standards for contaminated soils. Elevated concentrations and the mobility potential of several metals and non-metals require the application of remediation techniques for the final disposal of the sediments in the future.  相似文献   

7.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   

8.
酸性条件下Fe(II)的生物氧化过程可以被有效应用于煤矿酸性矿井水修复中,但是Fe行为与归宿的不确定性增加了应用难度。本研究通过对某煤矿酸性矿井水场地发生的生物地球化学过程进行监测,富集培养场地沉积物嗜酸微生物群落,进行室内恒化生物反应器连续流实验,探究微生物作用下Fe及其他金属离子的行为与归宿。研究表明,Fe的形态转化是场地和反应器中最主要的生物地球化学过程。当pH<2.7时,反应更倾向于产生溶解性Fe(III);当2.7相似文献   

9.
《Applied Geochemistry》2002,17(5):517-568
The range of As concentrations found in natural waters is large, ranging from less than 0.5 μg l−1 to more than 5000 μg l−1. Typical concentrations in freshwater are less than 10 μg l−1 and frequently less than 1 μg l−1. Rarely, much higher concentrations are found, particularly in groundwater. In such areas, more than 10% of wells may be ‘affected’ (defined as those exceeding 50 μg l−1) and in the worst cases, this figure may exceed 90%. Well-known high-As groundwater areas have been found in Argentina, Chile, Mexico, China and Hungary, and more recently in West Bengal (India), Bangladesh and Vietnam. The scale of the problem in terms of population exposed to high As concentrations is greatest in the Bengal Basin with more than 40 million people drinking water containing ‘excessive’ As. These large-scale ‘natural’ As groundwater problem areas tend to be found in two types of environment: firstly, inland or closed basins in arid or semi-arid areas, and secondly, strongly reducing aquifers often derived from alluvium. Both environments tend to contain geologically young sediments and to be in flat, low-lying areas where groundwater flow is sluggish. Historically, these are poorly flushed aquifers and any As released from the sediments following burial has been able to accumulate in the groundwater. Arsenic-rich groundwaters are also found in geothermal areas and, on a more localised scale, in areas of mining activity and where oxidation of sulphide minerals has occurred. The As content of the aquifer materials in major problem aquifers does not appear to be exceptionally high, being normally in the range 1–20 mg kg−1. There appear to be two distinct ‘triggers’ that can lead to the release of As on a large scale. The first is the development of high pH (>8.5) conditions in semi-arid or arid environments usually as a result of the combined effects of mineral weathering and high evaporation rates. This pH change leads either to the desorption of adsorbed As (especially As(V) species) and a range of other anion-forming elements (V, B, F, Mo, Se and U) from mineral oxides, especially Fe oxides, or it prevents them from being adsorbed. The second trigger is the development of strongly reducing conditions at near-neutral pH values, leading to the desorption of As from mineral oxides and to the reductive dissolution of Fe and Mn oxides, also leading to As release. Iron (II) and As(III) are relatively abundant in these groundwaters and SO4 concentrations are small (typically 1 mg l−1 or less). Large concentrations of phosphate, bicarbonate, silicate and possibly organic matter can enhance the desorption of As because of competition for adsorption sites. A characteristic feature of high groundwater As areas is the large degree of spatial variability in As concentrations in the groundwaters. This means that it may be difficult, or impossible, to predict reliably the likely concentration of As in a particular well from the results of neighbouring wells and means that there is little alternative but to analyse each well. Arsenic-affected aquifers are restricted to certain environments and appear to be the exception rather than the rule. In most aquifers, the majority of wells are likely to be unaffected, even when, for example, they contain high concentrations of dissolved Fe.  相似文献   

10.
The vertical distributions of dissolved Se species [Se(IV), Se(VI) and organic Se] and diagenetic constituents [Fe(II) and Mn(II)] were obtained in porewater samples of two Sudbury area lakes (Clearwater and McFarlane). The sedimentary concentration profiles of total Se, Se species bound to Fe–Mn oxyhydroxides and to organic matter, and of elemental Se were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicated that the concentrations of total dissolved Se in porewater samples were very low, varying from around 2.0 nM to a maximum level of 6.5 nM, while the concentrations of total Se species in the solid phase varied between 2 and 150 nmol/g on a dry weight basis. The two lakes showed striking differences in the presence of Se(IV) and Se(VI) at the sediment–water interface (SWI). In Clearwater Lake, Se(VI) was present at this interface and Se(IV) was not detectable, whereas the opposite was found in McFarlane Lake. This suggests that reducing conditions might have existed near the SWI of McFarlane Lake at the sampling time; this hypothesis was confirmed by several other measured chemical parameters. The profiles of total dissolved Se of both lakes suggest upward and downward diffusion of dissolved Se species along the concentration gradients. Assuming that no precipitation occurred at the SWI, the fluxes of dissolved Se species across the SWI in Clearwater and McFarlane lakes were estimated to be 0.108 and 0.034 nmol cm−2 a−1, respectively. These values do not include the possible losses of volatile Se species due to microbial methylation. In the reducing sediments of both lakes, the formation of elemental Se and pyritic Se were found to be important mechanisms for controlling the solubility of Se in this environment. The main geochemical processes involving Se identified in this study are: the adsorption of Se onto Fe–Mn oxyhydroxides at or near the SWI, the release of adsorbed Se by the reduction of the same oxyhydroxides and the mineralization of organic matter, and the removal of Se from porewaters to form elemental Se and a S mineral phase such as Se–pyrite or pure ferroselite.  相似文献   

11.
Sites of monomethylmercury (MMHg) production in Amazonian regions have been identified in hydraulic reservoirs, lake sediments and wetlands, but tailings ponds have not yet received sufficient attention for this purpose. This work evidenced high MMHg production within the water column and the interstitial water of two tailings ponds of French Guiana Au mines located; (i) in a small scale exploitation (Combat) where Hg was used for Au amalgamation, and (ii) in an industrial on-going Au mine (Yaoni) processing without Hg. The (MMHg)D maximum (2.5 ng L−1) occurred in the oxic water column above the sediment-water interface (SWI) of the most recent tailings pond (Combat), where the substrate was fresh, the redox transition was sharp and the pool of total Hg was large. In the Yaoni pond, the (MMHg)D maximum concentration (1.4 ng L−1) was located at the SWI where suboxic conditions prevailed. Using the (MMHg)D concentration as a proxy for Hg methylation rates, the present results show that Hg methylation may occur in various redox conditions in tailings ponds, and are favored in areas where the organic matter regeneration is more active.A 3-month long laboratory experiment was performed in oxic and anoxic boxes filled with high turbidity waters from the Combat Au mine to simulate tailings ponds. Slaked lime was added in an experimental set (2 mg L−1) and appeared to be very efficient for the reduction of suspended particulate matter (SPM) to environmentally acceptable concentrations. However, at the end of the experiment, large (MMHg)D concentrations were monitored under treated anoxic conditions with the (MMHg)D maximum located at the SWI above the Fe-reducing zones. No (MMHg)D was detected in oxic experiments. The use of slaked lime for SPM decantation appears to be an efficient and non-onerous process for Au miners to avoid Hg methylation in tailings ponds when it is combined with rapid drainage of the mine waters. A subsequent human intervention is however necessary for the recovery of soil structure through the cover of dried ponds with organic rich materials and reforestation to avoid the stagnation of rain waters and the occurrence of anoxia.  相似文献   

12.
《Applied Geochemistry》1995,10(2):237-250
The geochemistry of metal-rich mine waters and mineral precipitates from the Levant mine, Cornwall, has been examined. Sulphide oxidation at Levant mine has produced a wide range of secondary sulphides, oxides, chlorides, sulphates and carbonates in a gossan environment. The mine waters display a wide variation in alkalinity, pH, chloride, sulphate, sodium, potassium and heavy metal content which can be explained by variable degrees of mixing between acidic, metal-rich, rock drainage waters and neutral to alkaline sea waters. Transition metals are soluble in the acidic mine waters with concentrations up to 665 mg/l Cu, 41 mg/l Zn, 76 mg/l Mn, 6 mg/l Co and >2500 mg/l total Fe. The production of acid rock drainage and leaching of metals can be related to sulphide oxidation. Where these metal-rich acidic waters mix with infiltrated sea water, neutralization occurs and some metals are precipitated (principally Cu). Where pools of mine drainage are stagnant native copper and cuprite are precipitated, frequently observed replacing iron pipes and rail tracks and wooden shaft supports, due to electrode potential differences. In these solutions, dissolved copper species are also reduced by interaction with wood-derived organic species. Precipitation of iron oxyhydroxides, caused by a pH increase, also occurs and leads. to coprecipitation of other metals, including Cd, Co, Ph, Mn, Ag and Zn, thus limiting the release of dissolved metals in solution from the mine. However, the release of suspended metal-rich ochres in mine discharge waters (with high Ph, Zn, Cd, Mn, Ni, Sn, Sb, As, Bi, Cu, Co and Ag) will still present a potential environmental hazard.  相似文献   

13.
Pore water samples from seven nearshore areas in Bermuda were obtained under in situ conditions and analyzed for dissolved organic carbon, dissolved carbohydrates, dissolved free amino acids and dissolved humic substances. The concentration of dissolved organic carbon is higher than in the overlying nearshore waters indicating significant diagenetic remobilization of carbon in these recently deposited carbonate sediments. Dissolved carbohydrates decrease with depth due to microbial utilization.  相似文献   

14.
Enrichment of molybdenum (Mo) in reducing sediments due to authigenic fixation in anoxic interstitial waters could provide an indicator of hypoxic conditions that integrates over substantial temporal extents. Sediments maintained under controlled dissolved oxygen (DO) conditions showed elevated concentrations of Mo when exposed to low DO concentrations. Mo accumulation was linearly related to time of exposure in treatments below 2.8 mg O2/L, with less or no accumulation at higher concentrations. Rates of accumulation were independent of DO concentration below 2.8 mg/L. Accumulation occurred at DO concentrations higher than those limiting accumulation in field settings, with rates in the lowest treatments similar to those in sediments of deep basins with restricted circulation and low DO concentrations.  相似文献   

15.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

16.
The water, pore water, sediment, and fish samples were collected from the Hongfeng Reservoir in November 2003 and February 2004 in accordance with trace metal protocols. The average concentrations of total mercury (THg), dissolved mercury (DHg), reactive mercury, dissolved gaseous mercury, total methylmercury, and dissolved methylmercury in the water columns were 8.00, 5.70, 0.63, 0.05, 0.16, and 0.07 ng/L, respectively. THg and DHg in the water columns, THg in pore water and THg in lake sediments of the Hongfeng Reservoir showed the level of mercury in the Hongfeng Reservoir was higher than in other natural waters in the world due to the loading of a lot of waste water with relatively high concentrations of mercury, whereas methylmercury concentrations in fish (wet weight) varied from 1.73-51.00 ng/g, much lower than in most remote lakes and reservoirs reported in northern Europe and North America. Methylmercury distributions in pore water and sediments showed methylation occurred mainly in the upper several centimeters of sediment cores in the Hongfeng Reservoir. The concentrations of dissolved organic carbon, total suspended particles, total Hg, and methylmercury were higher at Houwu than those at Daba in November 2003. It is suggested that other pollutants such as N and P from fishing farm and other waste water at Houwu, which resulted in deterioration of water quality, affected the concentrations and distributions of mercury species in the reservoir.  相似文献   

17.
Membrane filtration technique was applied to study the distribution of iodine and some other chemical elements (iron, manganese, aluminum, and silicon) in natural waters between different sized fractions (>0.45, 0.45–0.22, 0.22–0.1, and <0.1 μm). The paper presents analysis of factors able to modify the proportions of the adsorbed and dissolved species of the elements in waters. It is proved that up to 90% of the total amount of the iodine ion occurs in aquatic environments in the form of dissolved species (according to the current standard, in the fraction < 0.45 μm), with approximately 49% of the total concentration corresponding to the fraction of <0.10 μm. An increase in the acidity of the waters and their enrichment in finely divided organic and mineral material, and also an increase in Fe and Mn concentrations, may increase in the concentrations of the trace element in the particulate matter (up to 26% of the total iodide concentration). The greatest variations in iodine distribution between different fractions are found in the surface waters.  相似文献   

18.
Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100 mg/kg, and total As concentrations (up to 5.95 μg/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical “fingerprints” were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust.  相似文献   

19.
Natural observations were analyzed to study the distribution of dissolved species of major and trace elements in the Onega and Mezen’ mouth areas and the tendencies in the chemical transformations of the is continental runoff in the river mouths of the White Sea drainage system. It is shown that the migration of major ions and dissolved species of Li, Rb, Cs, Sr, B, F and Mo is consistent with a conservative behavior and is controlled by hydrodynamic processes. The amounts of uranium and barium additionally supplying in the Mezen’ mouth exceed those removed with a continental runoff, whereas the Onega, Severnaya Dvina, and other rivers of the White Sea drainage system are characterized by the conservative behavior of uranium, while barium desorption from particulate matter reaches no more than 33% of its content in the riverine waters. The growth of concentrations of these elements in the Mezen’ mouth is caused by the long-term interaction of solid matters of the continental runoff with saline waters in the tide-affected estuary. 28–59, 12–63, 25–67 and 20–63% of concentrations of iron, aluminum, lanthanum, and cerium are removed from the riverine waters in the mouth areas of all studied rivers of the White Sea drainage system mainly owing to the coagulation and flocculation of organic and organomineral colloids. The distribution of dissolved species of mineral phosphorus and silicon in the Mezen’ mouth is presumably controlled by the remineralization of the organic matter in the bottom sediments, which due to the hydrological features of estuary are regularly stirred up and interact with vertically mixing water sequence. Up to 20–46% of dissolved phosphates and 3–22% of silicon are removed from the continental runoff during vegetation period in the mouths of the Onega, Severnaya Dvina, and other rivers of the White Sea drainage system mainly owing to their biological consumption.  相似文献   

20.
Biologically available nitrogen (fixed N) is removed from the oceans by metabolic conversion of inorganic N forms (nitrate and ammonium) to N2 gas. Much of this removal occurs in marine sediments, where reaction rates are thought to be limited by diffusion. We measured the concentration and isotopic composition of major dissolved nitrogen species in anoxic sediments off the coast of California. At depths below the diffusive penetration of nitrate, we found evidence of a large nitrate pool transported into the sediments by motile microorganisms. A ∼20‰ enrichment in 15N and 18O of this biologically transported nitrate over bottom water values and elevated [N2] and δ15N-N2 at depth indicate that this nitrate is consumed by enzymatic redox reactions with the production of N2 as the end product. Elevated N2O concentrations in pore waters below the nitrate diffusion depth confirm that these reactions include the denitrification pathway. A data-constrained model shows that at least 31% of the total N2 production in anoxic sediments is linked to nitrate bio-transport. Under suboxic/anoxic regimes, this nitrate bio-transport augments diffusive transport, thus increasing benthic fixed nitrogen losses and the reducing burial efficiency of sedimentary organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号