首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

2.
3.
Numerous studies have focused on vegetation traits and soil properties in grassland, few of which concerned about effects of human utilization patterns on grassland yet. Thus, this study hypothesized that human disturbance (e.g., grazing, mowing and fencing) triggered significant variation of biomass partitioning and carbon reallocation. Besides, there existed some differences of species diversity and soil fertility. To address these hypotheses of grassland with diverse utilization patterns in Hulun Buir City, Inner Mongolia, China, we sampled in situ about aboveground biomass (AGB) and belowground biomass (BGB) to evaluate their biomass allocation. Species diversity and soil properties were also investigated. Subsequently, we discussed the relationship of species diversity with environmental conditions, using data collected from 23 sites during the ecological project period of Returning Grazing Lands to Grasslands (RGLG) program. The results were as follows: 1) both AGB and BGB were lower on grazing regime than those on fencing and mowing, but the ratio of root-to-shoot (R/S) was higher on grazing regime than the other two utilization patterns; 2) neither of evenness and Simpson Index was different significantly among all grassland utilization patterns in desert, typical, and meadow grassland at 0.05. In meadow grassland, species richness of fencing pattern was significantly higher than that of grazing pattern (p 〈 0.05); 3) both of soil organic carbon content and soil available phosphorous content were increased significantly on fencing pattern than grazing pattern (p 〈 0.05) in desert grassland, and mowing patterns increased the soil nutrients (soil organic carbon, soil total phosphorous, soil available phosphorous, and soil total nitrogen) significantly compared with grazing patterns (p 〈 0.05) in typical grassland. However, there were no significant differences among utilization patterns in meadow grassland. In conclusion, both of AGB and BGB were increased s  相似文献   

4.
Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.  相似文献   

5.
In recent decades,overgrazing and the warming and drying climate have resulted in significant degradation of alpine grasslands in the source region of the Yellow River.However,research into the relationships between vegetation and soil properties has mainly focused on an overall degradation stage,and few studies have investigated which soil properties can impact vegetation change at different stages of degradation.Vegetation and soil properties were observed in the field and measured in the laboratory for different predefined stages of degradation for alpine grassland in Maduo County in the source region of the Yellow River.Results show that:1)the aboveground and belowground biomass,soil organic carbon,total nitrogen,nitrate,and ammonia content did not decrease significantly from the intact to moderate degradation stage,but decreased significantly at severe and very severe stages of degradation;2)dominant plant species shifted from gramineaes and sedges to forbs;3)the species richness and Pielou evenness indices decreased significantly at the very severe degradation stage,the Shannon-Wiener diversity index increased at the slight and moderate degradation,but decreased at the severe and very severe degradation stages;4)soil bulk density was the strongest soil driver for changes in the plant biomass and community diversity at the intact,slight and moderate degradation stages,whereas soil organic carbon and nitrate nitrogen content were the main driving factors for changes in plant biomass and diversity at the severe and very severe degradation stages.Our results suggest that there may be different interactions between soil properties and plants before and after moderate stages of degradation.  相似文献   

6.
Although the high diversity of plant species in the rupestrian fields has been primarily attributed to the existence of a set of distinct habitats, few studies support this assertion. The present study aimed to further investigate the relationship between physical and chemical attributes of soils with the diversity of plant species in this unique ecosystem. The rupestrian field is a unique vegetation formation that covers some of the southeastern Brazilian mountains in the transition of the Atlantic rain forest and the Cerrado (savanna). Different habitats occur according to soil characteristics (e.g., presence of rocks, sand, fertility, hydrology, etc.). These attributes ultimately influence the vegetation that is highly adapted to the harsh edaphic and climatic mountain conditions. Five distinct habitats were studied by us: rocky outcrops, peat bogs, sandy bogs, quartz gravelfields, and "cerrado" (savanna). A floristic survey indicated that four families are found at greater frequency: Poaceae, Asteraceae, Cyperaceae, and Leguminosae. The greatest diversity of plant species was found in the rocky outcrops habitat, followed by cerrado, peat bog, quartz gravel grassland, and sandy bogs, respectively. The main difference in the floristic composition among these habitats was related to the dominant species. Trachypogon spicatus (Poaceae) was the most dominant species in the rocky outcrops, Axonopus siccus (Poaceae) in the peat bogs, Lagenocarpus rigidus (Cyperaceae) in the sandy bogs, Schizachyrium tenerum (Poaceae) in the cerrado, while Vellozia sp. 8 (Velloziaceae) dominated the vegetation in the quartz gravel grassland. This study demonstrated that physical and chemical soil properties strongly related the diversity of plant species occurring in the different habitats of rupestrian fields.  相似文献   

7.
《山地科学学报》2020,17(2):373-383
Fire is a natural disturbance occurring every few years in many grasslands ecosystems. However, since European colonization, fire has been highly reduced or even suppressed in Argentinean grasslands, fostering ignitable material accumulation. This has led to occasional catastrophic controldemanding fire events, extended for larger areas. The aims of this work are to study vegetation recovery and change after a non-natural fire event in mountain grasslands. The study area is located in the Ventania mountain system, mid-eastern Argentina. We studied vegetation recovery after fire(January 2014) in two different communities: grass-steppes(grasslands) and shrub-steppes(open low shrublands). We measured vegetation cover, species richness and bare ground percentage in burned and unburned areas 1, 4, 8, 11 and 23 months after fire. Vegetation surveys were also performed at the end of the growing season(December) 11 and 23 months after fire. Data were analyzed using regression analysis, ANOVA and multivariate analysis(NMS, PERMANOVA). Both communities increased their vegetation cover at the same rate, without differences between burned and unburned areas after two years. Species richness was higher in shrublands and their recovery was alsofaster than in grasslands. Considering functional composition, besides transient changes during the first year after fire, there were no differences in abundance of different functional vegetation groups two years after fire. At the same time, shrublands showed no differences in species composition, while grasslands had a different species composition in burned and unburned plots. Also, burned grassland showed a higher species richness than unburned grassland. Data shown mountain vegetation in Pampas grassland is adapted to fire, recovering cover and richness rapidly after fire and thus reducing soil erosion risks. Vegetation in mountain Pampas seems to be well adapted to fire, but in grasslands species composition has changed due to fire. Nonetheless, these changes seem to be not permanent since prefire species are still present in the area.  相似文献   

8.
Rangelands occupy more than 80% of the agricultural land in Kyrgyzstan. At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people’s livelihoods, rangeland degradation presents a threat for the majority of the population. We present for the first time an ecological assessment of different pasture types in a remote area of the Naryn Oblast, using vegetation and soils as indicators of rangeland conditions. We analysed the current degree of utilization (grazing pressure), the amount of biomass, soil samples, and vegetation data, using cluster analysis as well as ordination techniques. Winter pastures (kyshtoo) are characterized by higher pH values (average of 7.27) and lower organic matter contents (average of 12.83%) compared to summer pastures (dzailoo) with average pH values of 6.03 and average organic matter contents of 21.05%. Additionally, summer pastures show higher above-ground biomass, and higher species richness and diversity. Our results support the hypothesis that winter pastures, which are located near settlements, suffer from over-utilisation, while the more distant summer pastures are subjected to much lower grazing pressure.  相似文献   

9.
The semi-arid grasslands in Inner Mongolia, China have been degraded by long-term grazing. A series of ecological restoration strategies have been implemented to improve grassland service. However, little is known about the effect of these ecological restoration practices on soil carbon and nitrogen storage. In this study, characteristics of vegetation and soil properties under continued grazing and exclusion of livestock for six years due to a nationwide conservation program—′Returning Grazing Lands to Grasslands(RGLG)′ were examined in semi-arid Hulun Buir grassland in Inner Mongolia, China. The results show that removal of grazing for six years resulted in a significant recovery in vegetation with higher above and below-ground biomass, but a lower soil bulk density and pH value. After six years of grazing exclusion, soil organic C and total N storage increased by 13.9% and 17.1%, respectively, which could be partly explained by decreased loss and increased input of C and N to soil. The effects of grazing exclusion on soil C and N concentration and storage primarily occurred in the upper soil depths. The results indicate that removal of grazing pressure within the RGLG program was an effective restoration approach to control grassland degradation in this region. However, more comprehensive studies are needed to evaluate the effectiveness of the RGLG program and to improve the management strategies for grassland restoration in this area.  相似文献   

10.
Controlled grazing is considered a good management strategy to maintain or increase the live weight of livestock and to reduce vegetation degradation of rangelands. The present study investigated soil characteristics, aboveground vegetation biomass dynamics and controlled grazinginduced changes in the live weight of local ewes in the semi-arid rangeland of Ahmadun, Ziarat, Balochistan province of Pakistan. An area of 115 ha was protected from livestock grazing in April 2014. In June 2015, soil characteristics within 0-30 cm depth i.e. soil organic matter (SOM), mineral nitrogen, pH and texture in controlled and uncontrolled grazing sites were assessed. Aboveground vegetation biomass measured in early (June) and late summer (August) in 2015 and 2016. The nutritional value i.e. crude protein, phosphorus (P), neutral detergent fiber (NDF), acid detergent fiber (ADF), calcium (Ca), magnesium (Mg) and potassium (K) of dominant plant species were assessed at the beginning of experiment in 2015. Vegetation cover of controlled and uncontrolled grazing sites was also measured during the two years of the study period using the VegMeasure software. From June to November in 2015 and 2016, controlled and uncontrolled livestock grazing sites were grazed on a daily basis by local ewes with a stocking rate of 2 and 1 head ha-1 respectively. Results reveal that the organic matter contents of coarse-textured, slightly alkaline soil of the study site were in the range of 9.4 - 17.6 g kg-1 soil and showed a strong positive correlation with aboveground vegetation biomass. The biomass of plants was 56.5% and 33% greater at controlled than uncontrolled grazing site in 2015 and 2016 respectively and plant cover was also higher at controlled than uncontrolled grazing site in both years. The nutrient contents were significantly (P<0.05) lower in grasses than shrubs. In both years, the controlled grazing increased the weight gain of ewes about two folds compared to the uncontrolled grazing. The results indicate that controlled grazing improved the vegetation biomass production and small ruminant productivity.  相似文献   

11.
Over the last decades, the reduction of manpower for herd management has led to an increase of continuous grazing systems(CGS) in the Italian Alps, which allow cattle to roam freely. Under CGS, due to high selectivity, livestock exploit grasslands unevenly, over-and under-using specific areas at the same time with negative effects on their conservation. To counteract these effects, a specific policy and management tool(i.e. Grazing Management Plan) has been implemented by Piedmont Region since 2010. The Grazing Management Plans are based on the implementation of rotational grazing systems(RGS), with animal stocking rate adjusted to balance it with grassland carrying capacity. A case study was conducted on alpine summer pastures to test the 5-year effects produced by the implementation of a Grazing Management Plan in grasslands formerly managed under several years of CGS on 1) the selection for different vegetation communities by cattle, 2) the abundance of oligo-, meso-, and eutrophic plant species(defined according to Landolt N indicator value), and 3) forage yield, quality, and palatability. A total of 193 vegetation surveys were carried out in 2011 and repeated in 2016. Cows were tracked yearly with Global Positioning System collars to assess their grazing selectivity, and forage Pastoral Value(PV) was computed to evaluate forage yield, quality, and palatability. Five years after RGS implementation, cow selectivity significantly decreased and the preference for the different vegetation communities was more balanced than under CGS. The abundance of meso-and eutrophic species increased, whereas oligotrophic ones decreased. Moreover, the abundance of moderately to highly palatable plant species increased, whereas non-palatable plant species decreased, with a consequent significant enhancement of the PV. Our findings indicate that the implementation of Grazing Management Plans can be considered a sustainable and effective management tool for improving pasture selection by cattle and forage quality in mountain pastures.  相似文献   

12.
Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecological functions and environmental significance, such as decreasing soil erosion, stabilizing sand dunes, preserving species diversity. However, in the last approximate 30 years, the species composition, productivity and distribution area of elm woodland has decreased severely. A series of studies have been carried out to find out whether the climate changes or human disturbances caused the degradation of elm woodland and how these factors affected elm woodland. In this study, undisturbed, plowing and grazing elm woodland were investigated in 1983 and 2011 by using Point-Centered Quarter method. The relationship between vegetation changes and environmental factors was analyzed by Bray-Curtis ordination. The results show that in 2011, species diversity and understory productivity of undisturbed elm woodland decrease slightly compared to those of undisturbed elm woodland in 1983. However, nearly 60% of the species is lost in the plowing and grazing elm woodland relative to the species undisturbed elm woodland in 1983. Interestingly, plowing stimulates the growth of elm and certain understory species through furrowing soil and accelerating soil nutrient turnover rate. Grazing disturbance not only leads to species loss and productivity decrease, but also induces changes in elm growth (small, short and twisted). The mean age of the elm was 29 ± 2 yr in undisturbed and plowing elm woodland, while only 15 yr in the grazing elm woodland. The results of Bray-Curtis ordination analysis show that all sample stands clustered to three groups: Group I including the undisturbed sample stands of 83UE (undisturbed elm woodland in 1983) and 11UE (undisturbed elm woodland in 2011); Group II including sample stands of PE (elm woodland disturbed by plowing); Group III including samples stands of GE (elm woodland disturbed by grazing). The results indicate that the long time disturbance of the plowing and grazing have converted elm woodland to different community types. Climate change is not the primary reason causing the degradation of elm woodland, but plowing and grazing disturbance. Both plowing and grazing decrease the vegetation composition and species diversity. Grazing further decreases vegetation productivity and inhibits the growth of elm tree. Therefore, we suggest that reasonable plowing and exclusive grazing would be favorable for future regeneration of degraded elm woodland.  相似文献   

13.
Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement vegetation restoration. This study analyzed the soil phospholipid fatty acids (PLFAs) in fresh and withered Kudzu (Pueraria montana var. lobata) vegetation conditions in different seasons. The results showed that vegetation biomass and seasonal change significantly affected microbial biomass and its community structure. Both fresh and withered Kudzu cover significantly increased soil microbial biomass, and the growth effect of microbes in the soil with fresh Kudzu cover was more obvious than that with withered Kudzu cover. Compared with the dry season, the rainy season significantly increased the microbial biomass and the B/F (the ratio of bacterial to fungal PLFAs) ratio but dramatically reduced the G+/G- (the ratio of gram-positive to gram-negative bacteria PLFAs). Kudzu cover and seasonal change had a significant effect on microbial structure in soil covered by higher vegetation biomass. Furthermore, soil temperature and moisture had different correlations with specific microbial biomass in the two seasons. Our findings highlight the effect of Kudzu vine cover on the soil microenvironment and soil microhabitat, enhancing the soil quality in the Dry-hot Valley of Jinsha River, Southwest China.  相似文献   

14.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   

15.
The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecotone. The ecotone position and structure are dynamic over time and space and it is driven by the changes in climate, land use or their interaction. In this context, we assessed the forest- grassland ecotone of temperate mountains in central Nepal by i) comparing species composition and richness across the ecotone, ii) analyzing if the forestgrassland ecotone is shifting towards the grassland center by colonizing them with trees, and iii) discussing the consequence of changed disturbance regime in the dynamics of this ecotone and the surrounding grasslands. We analyzed vegetation data sampled from belt transects laid across the forest- grassland ecotone in semi-natural grassland patches. Vegetation data consisting of species richness and composition, and size structure and regeneration of the two most dominant tree species, namely Rhododendron arboreum and Abies spectabilis, from the transects, were used to analyze the trend of the forest-grassland ecotone. Forest and grasslands were different in terms of floristic composition and diversity. Vascular plant speciesrichness linearly increased while moving from forest interior to grassland center. Spatial pattern of tree size structure and regeneration infers that forest boundary is advancing towards the grasslands at the expense of the grassland area, and tree establishment in the grasslands is part of a suceessional process. Temporally, tree establishment in grasslands started following the gradual decline in disturbance. We argue that local processes in terms of changed land use may best explain the phenomenon of ecotone shift and consequent forest expansion in these grasslands. We underpin the need for further research on the mechanism, rate and spatial extent of ecotone shift by using advaneed tools to understand the process indepth.  相似文献   

16.
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.  相似文献   

17.
Vegetation in hot and arid valleys is a crucial indicator of ecosystem health, but is vulnerable to human activities and environmental change. Using the Longkaikou Reservoir in the Jinsha River in southwestern China as a case study, we developed a spatially explicit model that combined the plant growth, fruiting, seed dispersal, and seed germination stages to reveal the potential impact of multiple human activities(reservoir construction, logging, grazing, and aerial seeding) on the vegetation dynamics of Dodonaea viscosa and Pinus yunnanensis. After reservoir construction, the grassland area of 68 km~2 in 2003 decreased to 24 km~2 in 2018, replaced by forest, shrubland, and bodies of water, and the precipitation increased during the dry season, which indicated the improvement of the local plant and soil environment. Our model predicted that when soil moisture decreased by more than 20% compared to current levels, the area of D. viscosa increased greatly at low elevations; however, when at higher soil moisture, P. yunnanensis would occupy more of the study area. Logging and grazing would slightly change the spatial pattern of vegetation and delay P. yunnanensis communities from achieving stability by directly reducing plant biomass. Countermeasures such as aerial seeding would increase the total area by 13.13 km~2 and 8.09 km~2 of two plants, respectively, and accelerate the stabilization of plant communities. The effects of multiple human activities on vegetation may counteract each other; for example, logging decreased the P. yunnanensis area whereas aerial seeding increased it, and plant biomass changed in response to this pressure. Given the complex relationships between vegetation and human impacts, our study provides a scientific basis for vegetation restoration and ecological security in this hot and arid valley.  相似文献   

18.
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) was used to assess the effect of seasonal shifts and vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer > autumn > spring > winter). The bacteria/fungi PLFAs and G (+) /G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.  相似文献   

19.
The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention  相似文献   

20.
Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10 yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号